Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T03:51:39.441Z Has data issue: false hasContentIssue false

Dormancy breakage of Stylosanthes humilis seeds by aluminium

Published online by Cambridge University Press:  07 June 2010

Dimas M. Ribeiro
Affiliation:
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000Viçosa, MG, Brasil
Ana M. Mapeli
Affiliation:
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000Viçosa, MG, Brasil
Marcelo A.G. Carnelossi
Affiliation:
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000Viçosa, MG, Brasil
Carla A. Delatorre
Affiliation:
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000Viçosa, MG, Brasil
Raimundo S. Barros*
Affiliation:
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000Viçosa, MG, Brasil
*
*Correspondence Fax: +55 31 3899 2580 Email: [email protected]

Abstract

Physiological dormancy of scarified seeds of Townsville stylo (Stylosanthes humilis HBK) was released by acidic aluminium (Al3+) solution. Antiethylenic substances inhibited germination of low-pH-stimulated dormant seeds, with a correspondingly low ethylene production and low activity of 1-aminocyclopropane-1-carboxylate (ACC) oxidase in seeds. On the other hand, antiethylenic substances did not decrease the germination of Al3+-stimulated seeds, but ACC oxidase activity and ethylene production by the seeds was decreased to a large extent. These data provide evidence that dormancy breakage by Al3+ differs from that caused by low pH and is not associated with ethylene production. Similarly to Al3+ action, methyl viologen (MV), a reactive oxygen species-generating compound, broke dormancy of Townsville stylo seeds. Sodium selenate and N-acetyl cysteine, antioxidant compounds, largely decreased germination of MV- and Al3+-stimulated dormant seeds. Altogether these data point to oxidative radicals constituting key molecules in the chain of events triggered by Al3+ leading to dormancy breakage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373399.CrossRefGoogle ScholarPubMed
Babbs, C.F., Phan, J.A. and Coolbaugh, R.C. (1989) Lethal hydrogen radical production in paraquat-treated plants. Plant Physiology 90, 12671270.CrossRefGoogle Scholar
Bailey-Serres, J. and Mittler, R. (2006) The roles of reactive oxygen species in plant cells. Plant Physiology 141, 311.CrossRefGoogle ScholarPubMed
Bailly, C. (2004) Active oxygen species and antioxidants in seed biology. Seed Science Research 14, 93107.CrossRefGoogle Scholar
Boscolo, P.R.S., Menossi, M. and Jorge, R.A. (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62, 181189.CrossRefGoogle ScholarPubMed
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Brown, T.A. and Shrift, A. (1982) Selenium: toxicity and tolerance in higher plants. Biological Review 57, 5984.CrossRefGoogle Scholar
Cakmak, I. and Horst, W.J. (1991) Effects of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83, 463468.CrossRefGoogle Scholar
Darkó, É., Ambrus, H., Stefanovits-Bányai, É., Fodor, J., Bakos, F. and Barnabás, B. (2004) Aluminum toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerance lines developed by in vitro microscope selection. Plant Science 166, 583591.CrossRefGoogle Scholar
Delatorre, C.A. and Barros, R.S. (1996) Germination of dormant seeds of Stylosanthes humilis as related to heavy metal ions. Biologia Plantarum 38, 269274.CrossRefGoogle Scholar
Delatorre, C.A., Barros, R.S. and Vieira, H.D. (1997) Germinação de sementes de Stylosanthes humilis em resposta à tiouréia. Revista Brasileira de Fisiologia Vegetal 9, 4353.Google Scholar
Desikan, R., Last, K., Williams, H.R., Tagliavia, C., Harter, K., Hooley, R., Hankock, J.T. and Neill, S.J. (2006) Ethylene induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. The Plant Journal 47, 907916.CrossRefGoogle ScholarPubMed
Eustice, D.C., Kull, F.J. and Shrift, A. (1981) Selenium toxicity: aminoacylation and peptide bond formation with selenomethionine. Plant Physiology 67, 10541058.CrossRefGoogle ScholarPubMed
Filek, M., Keskinen, R., Hartikainen, H., Szarejko, I., Janiak, A., Miszalski, Z. and Golda, A. (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. Journal of Plant Physiology 165, 833844.CrossRefGoogle ScholarPubMed
Finkel, T. and Holbrook, J.N. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239247.CrossRefGoogle ScholarPubMed
Footitt, S. and Cohn, M.A. (1992) Seed dormancy in red rice VII. Embryo acidification during dormancy-breaking and subsequent germination. Plant Physiology 100, 11961202.CrossRefGoogle Scholar
Foyer, C.H., Lelandais, M. and Kunert, K.J. (1994) Photooxidative stress in plants. Physiologia Plantarum 92, 696717.CrossRefGoogle Scholar
Konze, J.R., Schilling, N. and Kende, H. (1978) Enhancement of ethylene formation by selenoamino acids. Plant Physiology 62, 397401.CrossRefGoogle ScholarPubMed
Li, X.F., Zuo, F.H., Ling, G.Z., Li, Y.Y., Yu, Y.X., Yang, P.Q. and Tang, X.L. (2009) Secretion of citrate from roots in response to aluminum and low phosphorus stress in Stylosanthes. Plant and Soil 325, 219229.CrossRefGoogle Scholar
Lobréaux, S., Thoiron, S. and Briat, J.-F. (1995) Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress. Plant Journal 8, 443449.CrossRefGoogle Scholar
Massot, N., Nicander, J., Barceló, J., Poschenrieder, C. and Tillberg, E. (2002) A rapid increase in cytokinin levels and enhanced ethylene evolution precede Al3+-induced inhibition of root growth in bean seedlings (Phaseolus vulgaris L). Plant Growth Regulation 37, 105112.CrossRefGoogle Scholar
Mohamed, A.H., Ejeta, G. and Housley, T.L. (2001) Striga asiatica seed conditioning and 1-aminocyclopropane-1-carboxylate oxidase activity. Weed Research 41, 165176.CrossRefGoogle Scholar
Müller, K., Carstens, A.C., Linkies, A., Torres, M.A. and Leubner-Metzger, G. (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytologist 184, 885897.CrossRefGoogle Scholar
Neill, S.J., Desikan, R. and Hancock, J.T. (2002) Hydrogen peroxide signalling. Current Opinion in Plant Biology 5, 388395.CrossRefGoogle ScholarPubMed
Noble, A.D., Orr, D.M., Middleton, C.H.andRogers, L.G. (2000) Legumes in native pasture-asset or liability? A case history with stylo. Tropical Grasslands 34, 199206.Google Scholar
Oracz, K., Bouteau, H.E.M., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F. and Bailly, C. (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant Journal 50, 452465.CrossRefGoogle ScholarPubMed
Pelacani, C.R., Barros, R.S., Ribeiro, D.M. and Frigeri, R.B.C. (2005a) Breaking dormancy of Stylosanthes humilis seeds with low pH solutions. Acta Physiologiae Plantarum 27, 317323.CrossRefGoogle Scholar
Pelacani, C.R., Ribeiro, D.M., Barros, R.S. and Frigeri, R.B.C. (2005b) Germination of dormant seeds of Stylosanthes humilis as affected by organic acids. Seed Science and Technology 33, 105113.CrossRefGoogle Scholar
Pinheiro, F.J.A., Barros, R.S., Coelho, T.G. and Souza, B.M.L. (2008a) Breaking dormancy of Stylosanthes humilis seeds with selenium compounds. Seed Science Research 18, 4753.CrossRefGoogle Scholar
Pinheiro, F.J.A., Barros, R.S., Ribeiro, D.M. and Souza, B.M.L. (2008b) Efficiency of selenium compounds in breaking dormancy of Townsville stylo seeds. Seed Science and Technology 36, 271282.CrossRefGoogle Scholar
Ribeiro, D.M. and Barros, R.S. (2006) Sensitivity to ethylene as a major component in the germination of seeds of Stylosanthes humilis. Seed Science Research 16, 3745.CrossRefGoogle Scholar
Saltveit, M.E. and Yang, S.F. (1987) Ethylene. pp. 367401in Crozier, A. (Ed.) Principles and practice of plant hormone analysis. London, Academic Press.Google Scholar
Seppänen, M., Turakainen, M. and Hartikainen, H. (2003) Selenium effects on oxidative stress in potato. Plant Science 165, 311319.CrossRefGoogle Scholar
Stadtman, T.C. (1990) Selenium biochemistry. Annual Review of Biochemistry 59, 111127.CrossRefGoogle ScholarPubMed
Vieira, H.D. and Barros, R.S. (1994) Response of seed of Stylosanthes humilis to germination regulators. Physiologia Plantarum 92, 1720.CrossRefGoogle Scholar
Williams, R.J., Reid, R., Schultze-Kraft, R., Souza Costa, N.M. and Thomas, B.D. (1984) Natural distribution of Stylosanthes. pp. 73101in Stace, H.M.; Edye, L.A. (Eds) The biology and agronomy of Stylosanthes. Sydney, Academic Press.CrossRefGoogle Scholar