Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T14:29:30.720Z Has data issue: false hasContentIssue false

Differential expression of abscisic acid metabolism and signalling genes induced by seed-covering structures or hypoxia in barley (Hordeum vulgare L.) grains

Published online by Cambridge University Press:  27 January 2010

Guillermina M. Mendiondo
Affiliation:
IFEVA-Cátedra de Cerealicultura Facultad de Agronomía, Universidad de Buenos Aires/CONICET, Argentina
Juliette Leymarie
Affiliation:
UPMC Univ Paris 06, UR5, Germination et Dormance des Semences, Boîte courrier 152, 4 place Jussieu, F-75005Paris, France
Jill M. Farrant
Affiliation:
Department of Molecular and Cell Biology, University of Cape Town, South Africa
Françoise Corbineau*
Affiliation:
UPMC Univ Paris 06, UR5, Germination et Dormance des Semences, Boîte courrier 152, 4 place Jussieu, F-75005Paris, France
Roberto L. Benech-Arnold
Affiliation:
IFEVA-Cátedra de Cerealicultura Facultad de Agronomía, Universidad de Buenos Aires/CONICET, Argentina
*
*Correspondence Fax: (33) 1 44275927 Email: [email protected]

Abstract

Dormant barley grains cannot germinate at 30°C and this inability to germinate is imposed mostly by the glumellae which have been suggested to limit oxygen supply to the embryo. Hypoxia imposed either artificially or by the glumellae to embryos from dormant grains, increases embryo sensitivity to abscisic acid (ABA) and promotes the accumulation of ABA during the first hours after imbibition. Expression of candidate genes involved in ABA synthesis (HvNCED), catabolism (HvABA8OH1) and signalling (HvABI5, HvVP1 and HvPKABA) was analysed in embryos isolated from dormant whole or de-hulled grains incubated in air or in hypoxia (5% oxygen). The presence of the glumellae enhanced the expression of genes involved in ABA metabolism and signalling with respect to that observed in de-hulled grains incubated in air. These results suggest that at least part of the observed physiological responses to the presence of the glumellae are regulated at the level of gene expression. However, hypoxia imposed on dormant de-hulled grains did not mimic the presence of the glumellae in terms of expression of candidate genes. Hypoxia mimics the presence of the glumellae in terms of dormancy maintenance and ABA accumulation and sensitivity, but its effects appear to operate through different mechanisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argyris, J., Dahal, P., Hayashi, E., Still, D.W. and Bradford, K.J. (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiology 148, 926947.CrossRefGoogle ScholarPubMed
Benech-Arnold, R.L. (2004) Inception, maintenance, and termination of dormancy in grain crops: physiology, genetics, and environmental control. pp. 169198in Benech-Arnold, R.L.; Sánchez, R.A. (Eds) Handbook of seed physiology. Applications to agriculture. Binghamton, New York, Food Products Press.Google Scholar
Benech-Arnold, R.L., Giallorenzi, M.C., Frank, J. and Rodriguez, V. (1999) Termination of hull-imposed dormancy in barley is correlated with changes in embryonic ABA content and sensitivity. Seed Science Research 9, 3947.CrossRefGoogle Scholar
Benech-Arnold, R.L., Gualano, N., Leymarie, J., Côme, D. and Corbineau, F. (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. Journal of Experimental Botany 57, 14231430.CrossRefGoogle ScholarPubMed
Bradford, K.J., Benech-Arnold, R.L., Côme, D. and Corbineau, F. (2008) Quantifying the sensitivity of barley seed germination to oxygen, abscisic acid, and gibberellin using a population-based threshold model. Journal of Experimental Botany 57, 335347.CrossRefGoogle Scholar
Buta, J.G. and Lusby, W.R. (1986) Catechins as germination and growth inhibitors in Lespedeza seeds. Phytochemistry 25, 9395.CrossRefGoogle Scholar
Côme, D. and Tissaoui, T. (1968) Induction d'une dormance embryonnaire secondaire chez le pommier (Pyrus malus L.) par des atmosphères très appauvries en oxygène. Comptes Rendus de l'Académie des Sciences, Paris, Série III 266, 477479.Google Scholar
Corbineau, F. and Côme, D. (1996) Barley seed dormancy. Bios Boissons Conditionnement 261, 113119.Google Scholar
Corbineau, F., Lecat, S. and Côme, D. (1986) Dormancy of three cultivars of oat seeds (Avena sativa L.). Seed Science and Technology 14, 725735.Google Scholar
Cutillo, F., D'Abrosca, B., DellaGreca, M., Fiorentino, A. and Barelli, A. (2003) Lignans and neolignans from Brassica fruticulosa: effects on seed germination and plant growth. Journal of Agricultural Food Chemistry 51, 61656172.CrossRefGoogle ScholarPubMed
Debeaujon, I., Lepiniec, L., Pourcel, L. and Routaboul, J.M. (2007) Seed coat development and dormancy. pp. 2549in Bradford, K.; Nonogaki, H. (Eds) Seed development, dormancy and germination (Annual Plant Reviews). Oxford, Blackwell Publishing.CrossRefGoogle Scholar
Gubler, F., Hughes, T., Waterhouse, P. and Jacobsen, J. (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiology 147, 886896.CrossRefGoogle ScholarPubMed
Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. (2002) Abscisic acid signaling in seeds and seedlings. The Plant Cell 14, S15S45.CrossRefGoogle ScholarPubMed
Johnson, R.R., Wagner, R.L., Verhey, S.D. and Walker-Simmons, M.K. (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABFPeptide sequences. Plant Physiology 130, 110.CrossRefGoogle ScholarPubMed
Krochko, J.E., Abrams, G.D., Loewen, M.K., Abrams, S.R. and Cutler, A.J. (1998) (+)-Abscisic acid 8-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiology 118, 849860.CrossRefGoogle ScholarPubMed
Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., Nambara, E. and Marion-Poll, A. (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in endosperm is involved in the induction of seed dormancy. The Plant Journal 45, 309319.CrossRefGoogle ScholarPubMed
Lenoir, C., Corbineau, F. and Côme, D. (1983) Rôle des glumelles dans la dormance des semences d'orge. Physiologie Végétale 21, 633643.Google Scholar
Lenoir, C., Corbineau, F. and Côme, D. (1986) Barley (Hordeum vulgare) seed dormancy as related to glumella characteristics. Physiologia Plantarum 68, 301307.CrossRefGoogle Scholar
Leymarie, J., Bruneaux, E., Gibot-Leclerc, S. and Corbineau, F. (2007) Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP. Journal of Experimental Botany 58, 425437.CrossRefGoogle ScholarPubMed
Leymarie, J., Robayo-Romero, M.E., Gendreau, E., Benech-Arnold, R.L. and Corbineau, F. (2008) Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds. Plant and Cell Physiology 49, 18301838.CrossRefGoogle ScholarPubMed
Millar, A.A., Jacobsen, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B. and Gubler, F. (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. The Plant Journal 45, 942954.CrossRefGoogle ScholarPubMed
Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56, 165185.CrossRefGoogle ScholarPubMed
Quarrie, S.A., Whitford, P.N., Appleford, N.E.J., Wang, T.L., Cook, S.K., Henson, I.E. and Loveys, B.R. (1988) A monoclonal antibody to (S)-abscisic acid: its characterization and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta 163, 330339.CrossRefGoogle Scholar
Rice-Evans, C.A., Miller, J. and Paganga, G. (1997) Antioxidant properties of phenolic compounds. Trends in Plant Science 2, 152159.CrossRefGoogle Scholar
Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A.D. and McCarty, D.R. (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276, 18721874.CrossRefGoogle ScholarPubMed
Steinbach, H.S., Benech-Arnold, R.L., Kristof, G., Sánchez, R.A. and Marcucci-Poltri, S. (1995) Physiological basis of pre-harvest sprouting resistance in Sorghum bicolor (L.) Moench. ABA levels and sensitivity in developing embryos of sprouting-resistant and -susceptible varieties. Journal of Experimental Botany 46, 701709.CrossRefGoogle Scholar
Trevaskis, B., Hemming, M.N., Peacock, W.J. and Dennis, E.J. (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiology 140, 13971405.CrossRefGoogle ScholarPubMed
Weidner, S., Krupa, U., Amarowicz, R., Karamac, M. and Abe, S. (2002) Phenolic compounds in embryos of triticale caryopses at different stages of development and maturation in normal environment and after dehydration treatment. Euphytica 126, 115122.CrossRefGoogle Scholar