Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T19:35:49.207Z Has data issue: false hasContentIssue false

Differences in seed dormancy associated with the domestication of Cucurbita maxima: elucidation of some mechanisms behind this response

Published online by Cambridge University Press:  20 December 2017

Analía B. Martínez
Affiliation:
INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
Verónica Lema
Affiliation:
Laboratorio de Etnobotánica y Botánica Aplicada (LEBA), Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina
Aylen Capparelli
Affiliation:
División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina
Fernando López Anido
Affiliation:
IICAR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Argentina
Roberto Benech-Arnold
Affiliation:
IFEVA-Cátedra de Cultivos Industriales. Facultad de Agronomía, Universidad de Buenos Aires/CONICET, Argentina
Carlos G. Bartoli*
Affiliation:
INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
*
Author for correspondence: Carlos G. Bartoli, INFIVE, UNLP, CCT-CONICET La Plata, Argentina Email: [email protected]

Abstract

This work presents the results of physiological studies developed to understand modifications linked to the reduction of seed dormancy provoked by domestication processes. The experiments performed compared wild and domesticated Cucurbita subspecies and their hybrids developed by reciprocal crossings. Seeds of two accessions of the wild subspecies presented dormancy, but it was largely reduced in seeds from the domesticated genotype, and partially reverted in hybrids, especially in those obtained when the domesticated genotype was used as the mother plant. In addition, naked embryos of all subspecies did not display dormancy when incubation was performed at 28°C, but embryo germination was progressively reduced only in the wild genotype under decreasing incubation temperatures (22 and 16°C). In the embryos, abscisic acid (ABA) concentrations were similar in both domesticated and wild subspecies, whereas in the seed coat, it was threefold higher in the wild subspecies. The naked embryos from the wild subspecies were far more responsive to ABA than those from the domesticated subspecies. These results indicate that dormancy in the wild subspecies is imposed by the seed coat tissues and that this effect is mediated by their high ABA content and the sensitivity of the embryos to ABA. These physiological aspects were apparently removed by domestication along with the temperature-dependent response for germination.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, Y. and Lindhout, P. (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Annals of Botany 100, 10851094.Google Scholar
Benech-Arnold, R.L., Giallorenzi, M.C., Frank, J. and Rodriguez, V. (1999) Termination of hull-imposed dormancy in barley is correlated with changes in embryonic ABA content and sensitivity. Seed Science Research 9, 3947.CrossRefGoogle Scholar
Benech-Arnold, R.L., Gualano, N., Leymarie, J., Côme, D. and Corbineau, F. (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. Journal of Experimental Botany 57, 14231430.CrossRefGoogle ScholarPubMed
Bethke, P.C., Libourel, I.G.L., Aoyama, N., Chung, Y-Y., Still, D.W. and Jones, R.L. (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellins, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiology 143, 11731188.CrossRefGoogle ScholarPubMed
Bewley, J.D. (1997) Seed germination and dormancy. The Plant Cell 9, 10551066.CrossRefGoogle ScholarPubMed
De Wet, J.M. and Harlan, J. (1975) Weeds and domesticates: evolution in the man-made habitat. Economic Botany 29, 99107.CrossRefGoogle Scholar
Decker-Walters, D. and Walters, T. (2000) Squash, pp. 335351 in Kiple, K.F. and Ornelas, K.C. (eds), The Cambridge World History of Food. Cambridge University Press.CrossRefGoogle Scholar
Diaz-Vivancos, P., Barba-Espín, G. and Hernández, J.A. (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. The Plant Cell Reports 32, 14911502.CrossRefGoogle Scholar
Feurtado, J.A., Ambrose, S.J., Cutler, A.J., Ross, A.R.S., Abrams, S.R. and Kermode, A.R. (2004) Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism. Planta 218, 630639.CrossRefGoogle ScholarPubMed
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.Google Scholar
Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. (2002) Abscisic acid signaling in seeds and seedlings. The Plant Cell, S15S45.CrossRefGoogle ScholarPubMed
Fuller, D. (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Annals of Botany 100, 903924.Google Scholar
Fuller, D. and Allaby, R. (2009) Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation, pp. 238295 in Østergaard, L. (ed), Fruit Development and Seed Dispersal. Annual Plant Reviews. Oxford: Wiley-Blackwell.Google Scholar
Gubler, F., Millar, A.A. and Jacobsen, J.V. (2005) Dormancy release, ABA and preharvest sprouting. Current Opinion in Plant Biology 8, 183187.CrossRefGoogle Scholar
Hillman, G. and Davies, M. (1990) Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. Journal of World Prehistory 4, 157222.CrossRefGoogle Scholar
Jones, M. (2009) Dormancy and the plough: weed seed biology as an indicator of agrarian change in the first millenium AD, pp. 5863 in Fairbairn, A. and Weiss, E (eds), From Forages to Farmers. Paper in Honour of Gordon Hillman, Oxford, Oxbow Books.Google Scholar
Lema, V., Capparelli, A. and Pochettino, M.L. (2008) Taxonomic identification of Cucurbita species through seed coat micromorphology: implications for dry and carbonized archaeobotanical remains. Vegetation History and Archaeobotany 17, 277286.Google Scholar
Lira Saade, R. (1995) Estudios taxonómicos y ecogeográficos de las Cucurbitaceae latinoamericanas de importancia económica. México, Instituto de Biología, UNAM.Google Scholar
Martínez, A.B., Perez, S.I., Lema, V.S. and López Anido, F. (2015) Modificación de caracteres ligados a la domesticación en Cucurbita máxima. Utilización de la morfometría como herramienta para su identificación. Acta Botanica Malacitana 40, 95106.Google Scholar
Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M. and Kamiya, Y. (2010) Abscisic acid and the control of seed dormancy and germination. Seed Science Research 20, 5567.CrossRefGoogle Scholar
Nee, M. (1990) The domestication of Cucurbita (Cucurbitaceae). Economic Botany 44, (supplement: New perspectives on the origin and evolution of New World domesticated plants), 5668.Google Scholar
Pipino, L., Leus, L., Scariot, V. and Van Labeke, M.-C. (2013) Embryo and hip development in hybrid roses. Plant Growth Regulation 69, 107116.CrossRefGoogle Scholar
Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y. and Lopez-Molina, L. (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. The Plant Cell 20, 27292745.Google Scholar
Quarrie, S.A., Whitford, P.N., Appleford, N.E., Wang, T.L., Cook, S.K., Henson, I.E. and Loveys, B.R. (1988) A monoclonal antibody to (S)-abscisic acid: its characterization and use in a radioimmunoassay for measuringabscisic acid in crude extracts of cereal and lupin leaves. Planta 173, 330339.Google Scholar
Sanjur, O., Piperno, D., Andres, T. and Sel-Beaver, L. (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proceedings of the National Academy of Sciences of the United States of America 99, 535540.Google Scholar
Smith, B. (2006) Documenting domestication in plants in the archaeological record, pp. 1524 in Zeder, M., Emshwiller, E., Bradley, D. and Smith, B. (eds), Documenting Domestication: New Genetic and Archaeological Paradigms. Berkeley: University of California Press.Google Scholar
Steinbach, H.S., Benech-Arnold, R.L., Kristof, G., Sánchez, R.A. and Marcucci Poltri, S. (1995) Physiological basis of pre-harvest sprouting resistance in Sorghum bicolor (L.) Moench. ABA levels and sensitivity in developing embryos of sprouting resistantand susceptible varieties. Journal of Experimental Botany 45, 701709.CrossRefGoogle Scholar
Steinbrecher, T. and Leubner-Metzger, G. (2017) The biomechanics of seed germination. Journal of Experimental Botany 68, 765783.Google Scholar
Welbaum, G.E. (1999) Cucurbit seed development and production. HortTechnology 9, 341348.Google Scholar
Whitaker, T. and Bemis, W. (1964) Evolution in the genus Cucurbita . Evolution 18, 553559.CrossRefGoogle Scholar
Supplementary material: Image

Martínez et al supplementary material

Martínez et al supplementary material 1

Download Martínez et al supplementary material(Image)
Image 1.4 MB