Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T03:21:12.788Z Has data issue: false hasContentIssue false

Johann Heinrich Lambert's Scientific Tool Kit, Exemplified by His Measurement of Humidity, 1769–1772

Published online by Cambridge University Press:  26 January 2010

Maarten Bullynck*
Affiliation:
Université Paris 8 Vincennes à St.-Denis

Argument

Johann Heinrich Lambert (1728–1777) developed a very detailed theory of science and experiment. Using Lambert's hygrometric studies, this article provides an introduction to Lambert's theory and its practice. Of special interest is his well-founded theory on the emergence and definition of concepts and his neat eye for heuristics that should ultimately lead to a mathematization of physical phenomena. His use of visualizations in this context is especially remarkable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basso, Paola. 1999. Filosofia e geometria. Lambert interprete di Euclide. Volume 183 of Pubblicazioni della Facoltà di Lettere e Filosofia dell'Università degli Studi di Milano. Florence: La nuova Italia.Google Scholar
Beniger, James and Robyn, Dorothy. 1978. “Quantitative Graphics in Statistics: A Brief History.” American Statistician 32 (1):111.Google Scholar
Berka, Karl. 1973. “Lambert's Beitrag zur Meßtheorie.” Organon 9:231241.Google Scholar
Bopp, Karl. 1916. “Johann Heinrich Lamberts Monatsbuch mit den zugehörigen Kommentaren, sowie mit einem Vorwort über den Stand der Lambertforschung.” Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften, Mathmematisch-physikalische Klasse 27 (6):184.Google Scholar
Brachner, Alto, ed. 1983. G. F. Brander 1713–1783 Wissenschaftliche Instrumente aus seiner Werkstatt. Munich: Deutsches Museum München.Google Scholar
Bullynck, Maarten. 2008. “Presentation of J. H. Lambert's text ‘Vorstellung der Größen durch Figuren’ (with two analyses of Lambert's practice of visual strategies in his experimental studies).” Journal Electronique d'Histoire des Probabilités et de la Statistique/Electronic Journal for History of Probability and Statistics 4 (2).Google Scholar
Bullynck, Maarten. 2009a. “Decimal Periods and their Tables: A Research Topic (1765–1801).” Historia Mathematica 36 (2):137160.CrossRefGoogle Scholar
Bullynck, Maarten. 2009b. “A History of Factor Tables with Notes on the Birth of Number Theory 1657–1817.” Revue d'histoire des mathématiques forthcoming.Google Scholar
Chang, Hasok. 2004. Inventing Temperature: Measurement and Scientific Progress. New York: Oxford University Press.CrossRefGoogle Scholar
Feldman, Theodore S. 1983. The History of Meteorology, 1750–1800: A Study in the Quantification of Experimental Physics. Ph.D. diss., University of California, Berkeley.Google Scholar
Feldman, Theodore S. 1985. “Applied mathematics and the quantification of experimental physics: The case of barometric hypsometry.” Historical studies in the physical sciences 15:127197.CrossRefGoogle Scholar
Feldman, Theodore S. 1990. “Late Enlightenment Meteorology.” The Quantifying Spirit in the Eighteenth Century, edited by Frangsmyr, Tore, Heilbron, John L., and Rider, Robin E., 145179. Berkeley: University of California Press.Google Scholar
Foucault, Michel. 1966. Les mots et les choses. Paris: Gallimard.Google Scholar
Geurts, H. and van Bigelen, A.. 1983. Historische weerkundige waarnemingen, Deel I. Technical Report KNMI 165-I. De Bilt: Koninklijk Nederlands Meteorologisch Instituut.Google Scholar
Goldstein, Catherine and Schappacher, Norbert. 2007. “A Book in Search of a Discipline (1801–1860).” The Shaping of Arithmetic after Carl F. Gauss's Disquisitiones Arithmeticae, edited by Goldstein, C., Schappacher, Norbert, and Schwermer, Joachim, 366. Berlin: Springer.Google Scholar
Golinski, Jan. 2007. British weather and the climate of Enlightenment. Chicago and London: University of Chicago Press.CrossRefGoogle Scholar
Gray, Jeremy and Tilling, Laura. 1978. “Johann Heinrich Lambert, Mathematician and Scientist, 1728–1777.” Historia Mathematica 5 (1):1341.CrossRefGoogle Scholar
Hackmann, W. D. 1979. “The Relationship between Concept and Instrument Design in Eighteenth-Century Experimental Science.” Annals of Science 36 (3):205224.CrossRefGoogle Scholar
Hoffmann, Christoph. 2006. Unter Beobachtung: Naturforschung in der Zeit der Sinnesapparate. Göttingen: Wallstein.Google Scholar
Jankovic, Vladimir. 2000c. Reading the Skies: A Cultural History of English Weather, 1650–1820. Chicago: Chicago University Press.Google Scholar
Kokott, Wolfgang. 2002. “Bodes Astronomisches Jahrbuch als internationales Archivjournal.” Astronomie von Olbers bis Schwarzschild, edited by Dick, Wolfgang and Hamel, Jürgen, 142157. Frankfurt am Main: Harry Deutsch.Google Scholar
Lambert, Johann Heinrich. 1755. “Tentamen de vi caloris, qua corpora dilatat ejusque dimensione.” Acta Helvetica 2: 172242.Google Scholar
Lambert, Johann Heinrich. 1764. Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrtum und Schein. Leipzig: Johann Wendler.Google Scholar
Lambert, Johann Heinrich. 1765. Theorie der Zuverläßigkeit der Beobachtungen und Versuche. Beyträge zum Gebrauche der Mathematik und deren Anwendung, Volume I, 424488. Berlin: Buchhandlung der Realschule.Google Scholar
Lambert, Johann Heinrich. 1765/1767a. “Discours de réception.” Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, 506–514.Google Scholar
Lambert, Johann Heinrich. 1768. “De topicis schediasma.” Nova Acta Eruditorum, 12–33.Google Scholar
Lambert, Johann Heinrich. 1769. “Essai d'Hygrométrie ou sur la mesure de l'humidité.” Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, 68–127.Google Scholar
Lambert, Johann Heinrich. 1770/1772. “Essai de taxéométrie ou sur la mesure de l'Ordre.” Nouveaux Mémoires de l'Académie de Berlin, 327–342.Google Scholar
Lambert, Johann Heinrich. 1771a. Anlage zur Architectonic, oder Theorie des Ersten und des Einfachen in der philosophischen und mathematischen Erkenntniß. Riga: Hartknoch.Google Scholar
Lambert, Johann Heinrich. 1771b. “Exposé de quelques observations qu'on pouroit faire pour répandre du jour sur la Météorologie.” Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, 60–66.Google Scholar
Lambert, Johann Heinrich. 1772. “Suite de l'essai d'Hygrométrie.” Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, 65–102.Google Scholar
Lambert, Johann Heinrich. 1781–1787. Deutscher gelehrter Briefwechsel, edited by Bernoulli, Johann III, 5 volumes. Berlin: Selbstverlag.Google Scholar
Lambert, Johann Heinrich. 1782 and 1787. Logische und philosophische Abhandlungen, edited by Bernoulli, Johann III, 2 volumes. Berlin: Selbstverlag.Google Scholar
Leibniz, Gottfried Wilhelm 1684. “Meditationes de cognitione, veritate et ideis.” Acta Eruditorum, 537–542.Google Scholar
[Lichtenberg, Georg Cristoph]. 1778. “Johann Heinrich Lambert” (Nekrolog). Teutscher Merkur, 259–277.Google Scholar
Locke, John. 1690. An Essay Concerning Human Understanding. London: Th. Basset.Google Scholar
Moore, Edward. 1956. “Gedanken-Experiments on Sequential Machines.” Automata Studies, edited by Shannon, Claude E. and McCarthy, John, 129153. Princeton NJ: Princeton University Press.Google Scholar
Murhard, Friedrich Wilhelm. 1798–1799. Die wichtigsten Lehren der Physik historisch bearbeitet, 2 volumes. Göttingen: Johann Georg Rosenbusch's Witwe.Google Scholar
Pater, Cornelis de. 1979. Petrus van Musschenbroek [1692–1761], een newtoniaans natuuronderzoeker. Utrecht: Elinkwijk.Google Scholar
Penman, Howard Latour. 1948. “Natural evaporation from open water, bare soil and grass.” Proceedings of the Royal Society of London (Series A) 194:120145.Google Scholar
Schulze, Johann Karl. 1782. “Moyen simple et facile pour déterminer par approximation l'orbite d'une Comète; appliqué à la Comète de 1779.” Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres, 329–352.Google Scholar
Sheynin, Oscar. 1970/1971a. “Newton and the Classical Theory of Probability.” Archive for the History of Exact Sciences 7 (3):217243.Google Scholar
Sheynin, Oscar. 1970/1971b. “J. H. Lambert's Work on Probability.” Archive for the History of Exact Sciences 7 (3):244256.Google Scholar
Tilling, Laura. 1973. “The Interpretation of Observational Errors in the 18th and Early 19th Centuries.” Ph.D. diss. University of London. London.Google Scholar
Tilling, Laura. 1975. “Early Experimental Graphs.” British Journal for the History of Science 8:193213.Google Scholar
Ungeheuer, Gerold. 1990. Kommunikationstheoretische Schriften II: Symbolische Erkenntnis und Kommunikation. Volume 15 of Aachener Studien zur Semiotik und Kommunikationsforschung. Aachen: Rader Publikationen.Google Scholar
Wolff, Christian. 1738. Psychologia Empirica. Frankfurt am Main and Leipzig: Renger.Google Scholar