Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T07:56:38.367Z Has data issue: false hasContentIssue false

Generality above Abstraction: The General Expressed in Terms of the Paradigmatic in Mathematics in Ancient China

Published online by Cambridge University Press:  01 September 2003

Karine Chemla
Affiliation:
REHSEIS, CNRS University, Paris 7

Abstract

Argument

Abstraction is commonly valued as being essential to mathematics or even consubstantial with it. In relation to this belief, mathematical texts from Antiquity – be they from Babylon, Egypt, or China –, which are composed of seemingly concrete problems and algorithms solving them, have been considered to be practice-oriented and deprived of theory. This paper offers an alternative view on both issues. Relying on evidence given by third-century commentaries on The Nine Chapters on Mathematical Procedures, a Chinese treatise composed around the beginning of the Common Era,this paper argues that, in the scholarly mathematical tradition of ancient China, generality was more valued than abstraction. In this respect, problems must be interpreted as paradigms, in the sense grammarians use the term. One of the goals of theoretical endeavor was to exhibit the most general operations possible, and this purpose can be read in quite a few specific features of mathematical practice and concepts. Moreover, it is shown that abstraction is not absent from The Nine Chapters, but that it entertains with generality a relationship that requires analysis and can by no means be taken for granted. These ancient sources hence constitute an invitation to develop a critical approach toward the relation of mathematics to abstraction and generality taken separately, as well as the relation of these two values with each other.

Type
Articles
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Charette, F.1995. “Orientalisme et histoire des sciences. L’historiographie européenne des sciences islamiques et hindoues, 1784–1900.” Mémoire présenté à la Faculté des études supérieures en vue de ľobtention du grade de Maître ès arts (M.A.) en histoire. Département ďhistoire. Faculté des arts et des sciences. Université de Montréal.
Chemla, K.1991. “Theoretical Aspects of the Chinese Algorithmic Tradition (first to third century).” Historia Scientiarum 42:7598+errata in the following issue.Google Scholar
Chemla, K.1992. “Résonances entre démonstration et procédure. Remarques sur le commentaire de Liu Hui (3° siècle) aux Neuf Chapitres sur les Procédures Mathématiques (1° siècle).In Regards obliques sur ľargumentation en Chine, edited by K. Chemla. Extrême-Orient, Extrême-Occident 14:91129CrossRef
Chemla, K.1994. “Similarities between Chinese and Arabic Mathematical Documents (I): root extraction.” Arabic Sciences and Philosophy 4:207266.CrossRefGoogle Scholar
Chemla, K.1996. “Positions et changements en mathématiques à partir de textes chinois des dynasties Han à Song-Yuan. Quelques remarques.” Extrême-Orient, Extrême-Occident 18:11547.CrossRefGoogle Scholar
Chemla, K.1997. “Qu’est-ce qu’un problème dans la tradition mathématique de la Chine ancienne? Quelques indices glanés dans les commentaires rédigés entre le 3ième et le 7ième siècles au classique Han Les neuf chapitres sur les procédures mathématiques.” Extrême-Orient, Extrême-Occident 19:91126.CrossRefGoogle Scholar
Chemla, K.1997a. “What is at Stake in Mathematical Proofs from Third Century China?Science in Context 10:22751.Google Scholar
Chemla, K.1998. “Lazare Carnot et la généralité en géométrie. Variations sur le théorème dit de Menelaus.Revue ďhistoire des mathématiques 4:16390.Google Scholar
Chemla, K.2000. “Les problèmes comme champ ďinterprétation des algorithmes dans Les neuf chapitres sur les procédures mathématiques et leurs commentaires. De la résolution des systèmes ďéquations linéaires.” Oriens-Occidens 3:189234.Google Scholar
Chemla, K.2001. “I ‘Nove capitoli sui procedimenti matematici’: la costituzione di un canone nella matematica (The nine chapters on mathematical procedures, the constitution of a Canon in mathematics).InLa scienza in Cina,edited by K. Chemla, with F. Bray, Fu Daiwie, Huang Yi-Long, G. Métailié. In Sandro Petruccioli (gen. ed.), Storia della scienza, , 131 & 133141. Roma: Enciclopedia Italiana.
Chemla, K.2002. “What was a mathematical problem in ancient China?Preprint for the conference organized by Roger Hart and Bob Richards, The disunity of Chinese science, Chicago, May 10-12, 2002, http://hal.ccsd.cnrs.fr/, section Philosophie, sub-section [Lt ]Histoire de la logique et des mathématiques[Gt ]. The final version will appear in the proceedings of the conference.
Chemla, K.and Guo Shuchun. Forthcoming. Les neuf chapitres. Edition critique, traduction et présentation des Neuf chapitres sur les procédures mathématiques (les débuts de ľère commune) ainsi que des commentaires de Liu Hui (3ième siècle) et de Li Chunfeng (7ième siècle). Paris: Dunod.
Cullen, C.1996. Astronomy and Mathematics in Ancient China: The Zhou bi suan jing. Needham Research Institute Studies, 1, Cambridge: Cambridge University Press.
Guo Shuchun. 1984. “Analysis of the concept and uses of in The nine chapters on mathematical procedures and Liu Hui’s commentary.Kejishi Jikan (Journal for the history of science and technology) 11:2136 (in Chinese).Google Scholar
Høyrup, J.2002. Lengths, Widths, Surfaces: A Portrait of Old Babylonian Algebra and its Kin. New York: Springer.
Kline, M.[1972]1990. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press. Quoted according to the paperback edition of 1990, 3 vols.
Li Jimin. 1982. “Ratio theory in The nine chapters on mathematical procedures.” In Jiu zhang suanshu yu Liu Hui (The nine chapters on mathematical procedures and Liu Hui), edited by Wu Wenjun, 22845. Beijing: Beijing shifan daxue chubanshe (in Chinese).
Li Jimin. 1998. Jiuzhang suanshu daodu yu yizhu (Guidebook and annotated translation of The nine chapters on mathematical procedures). Xi’san: Shaanxi kexue jishu chubanshe.
Li Yan, Du Shiran. [1963]1987. Mathematics in Ancient China: A Concise History (Zhongguo gudai shuxue jianshi). Beijing: Zhongguo Zhonghua Shuju. Updated and translated in English by J. N. Crossley and A. W. C. Lun, Chinese Mathematics: a Concise History. Oxford:Oxford Science Publications.
Lloyd, G. E. R. L.1997. “Exempli gratia: to make an example of the Greeks.” Extrême-Orient, Extrême-Occident 19:139151.CrossRefGoogle Scholar
Peng Hao. 2001. Zhangjiashan hanjian [Lt ]Suanshushu[Gt ] zhushi (Commentary on the Han book on bamboo slips found at Zhangjiashan Book of Mathematical Procedures). Beijing: Kexue chubanshe.
Qian Baocong. 1963. Suanjing shi shu (Ten Classics of Mathematics), 2 vols. Beijing: Zhonghua shuju.
Raina, Dhruv. 1999. “Nationalism, Institutional Science, and Politics of Representation: Ancient Indian Astronomy in the Landscape of French Enlightenment Historiography.” Ph.D. thesis, Faculty of Arts, Göteborg University (Sweden).
Shen Kangshen. 1997. Jiuzhang suanshu daodu (Guidebook for reading The nine chapters on mathematical procedures). Wuhan (Hankou): Hubei jiaoyu chubanshe.
Shen Kangshen, John N. Crossleyand Anthony W.-C. Lun. 1999. The nine chapters on the mathematical art. Companion and commentary. Beijing: Oxford University Press and Science Press.
Unguru, S.1975. “On the need to rewrite the history of Greek mathematics.” Archive for the History of Exact Sciences 15:67114.Google Scholar
Volkov, A.1992. “Analogical Reasoning in Ancient China. Some Examples.” In obliques sur ľargumentation en Chine, edited by K. Chemla. Extrême-Orient, Extrême-Occident, 14:1548.
Volkov, A.1994. “Transformations of geometrical objects in Chinese mathematics and their evolution.In Notions et perceptions du changement en Chine, edited by V. Alleton and A. Volkov, 13348. Paris: Collège de France(Mémoires de ľInstitut des Hautes Etudes Chinoises, vol. XXXVI).
Wagner, D.1979. “An early Chinese derivation of the volume of a pyramid. Liu Hui, third century A.D.Historia mathematica 6:164188.Google Scholar
Wu Wenjun. 1982. Churu xiangbu yuanli (“The principle 'What comes in and what goes out compensate each other'“). In Jiu zhang suanshu yu Liu Hui (The nine chapters on mathematical procedures and Liu Hui), edited by Wu Wenjun, 5875. Beijing: Beijing shifan daxue chubanshe.