Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T14:28:48.978Z Has data issue: false hasContentIssue false

Brouwer versus Hilbert: 1907–1928

Published online by Cambridge University Press:  26 September 2008

J. Posy Carl
Affiliation:
Department of PhilosophyDuke University

Abstract

L. E. J. Brouwer and David Hubert, two titans of twentieth-century mathematics, clashed dramatically in the 1920s. Though they were both Kantian constructivists, their notorious Grundlagenstreit centered on sharp differences about the foundations of mathematics: Brouwer was prepared to revise the content and methods of mathematics (his “Intuitionism” did just that radically), while Hilbert's Program was designed to preserve and constructively secure all of classical mathematics.

Hilbert's interests and polemics at the time led to at least three misconstruals of intuitionism, misconstruals which last to our own time: Current literature often portrays popular views of intuitionism as the product of Brouwer's idiosyncratic subjectivism; modern logicians view intuitionism as simply applying a non-standard formal logic to mathematics; and contemporary philosophers see that logic as based upon a pure assertabilist theory of meaning. These pictures stem from the way Hilbert structured the controversy.

Even though Brouwer's own work and behavior occasionally reinforce these pictures, they are nevertheless inaccurate accounts of his approach to mathematics. However, the framework provided by the Brouwer-Hilbert debate itself does not supply an adequate correction of these inaccuracies. For, even if we eliminate these mistakes within that framework, Brouwer's position would still appear fragmented and internally inconsistent. I propose a Kantian framework — not from Kant's philosophy of mathematics but from his general metaphysics — which does show the coherence and consistency of Brouwer's views. I also suggest that expanding the context of the controversy in this way will illuminate Hilbert's views as well and will even shed light upon Kant's philosophy.

Type
Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, O. 1927. “ Mathematische Existenz.” Jahrbuch für Philosophie und phänomenologische Forschung, 8.Google Scholar
Benacerraf, P., and Putnam, H. 1983. Philosophy of Mathematics: Selected Readings, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Bennett, J. 1974. Kant's Dialectic. Cambridge: Cambridge University Press.Google Scholar
Bernays, P. 1938. “Sur les questions méethodologiques actuelles de la théorie hilbertienne de la démonstration.” Les Entretiens de Zurich sur les fondements et la méthod des sciences mathematiques.Google Scholar
Bishop, E. 1967. Foundations of Constructive Analysis. New York: McGraw-Hill.Google Scholar
Breger, H. 1992. “Le Continu chez Leibniz.” In Salanskis, and Sinaceur, 1992.Google Scholar
Borel, E. 1898. Leçons sur la Theorie des Fonctions. Paris: Gauthier-Villars.Google Scholar
Borel, E. 1927. “À Propos de la recente discussion entre M. R. Wavre et M. P. Levy,” Revue de Métaphysique et de Morale 34:271–76.Google Scholar
Brouwer, L. E. J. [1907] 1975. “Over de grondslagen der wiskunde.” Dissertation, University of Amsterdam. Translated as On the Foundations of Mathematics in Brouwer 1975, 11101.Google Scholar
Brouwer, L. E. J. [1908] 1975.“De onbetrouwbaarheid der logische principes.” Tijdschrift voor wijsbegeerte 2:152–58. Translated as “The Unreliability of the Logical Principles.” In Brouwer 1975, 107–11.Google Scholar
Brouwer, L. E. J. [1912] 1975.“Intuitionism and Formalism.” Bulletin of the American Mathematical Society 20: 8196. Reprinted in Brouwer 1975, 123–38.CrossRefGoogle Scholar
Brouwer, L. E. J. [1918] 1975. “Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten, Erste Teil, Allgemeine Mengenlehre.” Verhan-delingen, Koninkliijke Akademie van Wetenschappen te Amsterdam, sec. 1, part 12, no 5:143. Reprinted in Brouwer 1975,151–90.Google Scholar
Brouwer, L. E. J. [1919] 1975. “Begründung der Mengenlehre unäabhängig vom logischen Satz vom ausgeschlossenen Dritten, Zweiter Teil, Theorie der Punktmengen.” Verhandelingen, Koninkliijke Akademie van Wetenschappen te Amsterdam, sec.1, part 12, no. 7:133. Reprinted in Brouwer 1975,191221.Google Scholar
Brouwer, L. E. J. [1923] 1967. “Über die Bedeutung des Satzes vom ausgeschlossenen Dritten in der Mathematik, insbesondere in der Fuktionentheorie.” Journal für die reine und angewandte Mathematik 154:18. Translated in Heijenoort, van 1967,334–41.Google Scholar
Brouwer, L. E. J. [1923] 1975a., “Begründung der Funktionenhehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Stetigkeit, Messbarkeit, Derivierbarkeit.” Verhandelingen, Koninkliijke Akademie van Wetenschappen te Amsterdam, sec. 1, part 12, no. 2:124. Reprinted in Brouwer 1975,246–67.Google Scholar
Brouwer, L. E. J. [1923] 1975b. “Intuitionistische Zerlegung mathematischer Grundbegriffe.” Jahresbericht der deutschen Mathematiker Vereiningung 33:251– 56. Reprinted in Brouwer 1975, 275–80.Google Scholar
Brouwer, L. E. J. [1924] 1975. “Beweis dass jede volle Funktion gleichmässig stetig ist.” Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 27:189–93. Reprinted in Brouwer 1975, 286–90.Google Scholar
Brouwer, L. E. J. [1926] 1975. “Zur Begründung der intuitionistischen Mathematik II,” Mathematische Annalen 95:453–72. Reprinted in Brouwer 1975, 321–40.CrossRefGoogle Scholar
Brouwer, L. E. J. [1927] 1975a. “Über Definitionsbereiche von Funktionen.” Mathematische Annalen 97:6075. Reprinted in Brouwer 1975, 390405.CrossRefGoogle Scholar
Brouwer, L. E. J. [1927] 1975b. “Virtuelle Ordnung und unerweiterbare Ordnung”, Journal für die reine und angewandte Mathematik 157:255–57. Reprinted in Brouwer 1975, 406–8.CrossRefGoogle Scholar
Brouwer, L. E. J. [1927] 1975c. “Zur Begründung der intuitionistischen Mathematik, III.”, Mathematische Annalen 96:451–88. Reprinted in Brouwer 1975, 352–89.CrossRefGoogle Scholar
Brouwer, L. E. J. [1928] 1975. “Intuitionistische Betrachtungen über den Formalismus.” Sit zungsberichte der preuszischen Akademie der Wissenschaften zu Berlin 1928, 4852. Reprinted in Brouwer 1975, 409–14.Google Scholar
Brouwer, L. E. J. [1930] 1975. Die Struktur des Kontinuums. Vienna. Reprinted in Brouwer 1975, 429–40.Google Scholar
Brouwer, L. E. J. [1929] 1975. “Mathematik, Wissenschaft und Sprache.” Monatschefte für Mathematic und Physik 36: 153–64. Reprinted in Brouwer 1975, 417–28.CrossRefGoogle Scholar
Brouwer, L. E. J. [1948] 1975a. “Consciousness, Philosophy and Mathematics.” Proceedings of the Tenth International Congress of Philosophy, Amsterdam, 3:1235–49. Reprinted in Brouwer 1975, 480–94.Google Scholar
Brouwer, L. E. J. [1948] 1975b. “Essentieel negatieve eigenschappen.” Indagationes mathematicae 10:322–23. Translated as “Essentially Negative Properties,” in Brouwer 1975, 478–79.Google Scholar
Brouwer, L. E. J. [1950] 1975a. “Discours Final de M. Brouwer.” Les Methodes Formelles en Axiomatique, Colloques Internationaux du Centre National de la Recherche Scientifique (Paris), 75. Reprinted in Brouwer 1975, 503.Google Scholar
Brouwer, L. E. J. [1950] 1975b. “Remarques sur la notion d’ordre.” Comptes rendus Academie des Sciences (Paris) 230:263–65. Reprinted in Brouwer 1975, 499500.Google Scholar
Brouwer, L. E. J. [1951] 1975. “On Order in the Continuum and the Relation of Truth to Non-Contradictority.” Indagationes mathematicae 13:357–58. Reprinted in Brouwer 1975, 504–05.CrossRefGoogle Scholar
Brouwer, L. E. J. [1952] 1975. “Historical Background, Principles and Methods of Intuition-ism.” South African Journal of Science 49:139–46. Reprinted in Brouwer 1975, 508–15.Google Scholar
Brouwer, L. E. J. [1954] 1975. “Points and Spaces.” Canadian Journal of Mathematics 6:117. Reprinted in Brouwer 1975, 522–40.CrossRefGoogle Scholar
Brouwer, L. E. J. 1975. Collected Works, vol. 1. Edited by Heyting, A. Amsterdam: North Holland Publishing.Google Scholar
Dekker, J., ed. 1962. Recursive Function Theory: Proceedings of Symposia in Pure Mathematics, vol. 5. Providence: American Mathematical Society.CrossRefGoogle Scholar
Dewey, J. 1938. Logic: The Theory of Inquiry. New York: Holt.Google Scholar
Dummett, M. 1973.“The Philosophical Basis of Intuitionistic Logic.” In Rose and Shepherdson 1973, 540. Reprinted in Dummett 1978.Google Scholar
Dummett, M. 1977. Elements of Intuitionism. Oxford: Oxford University Press.Google Scholar
Dummett, M. 1978. Truth and Other Enigmas. Cambridge, Mass.: Harvard University Press.Google Scholar
Euler, L. 1775. “Remarques Sur Les Mémoires Précédens de M. Bernoulli.” Opera Omnia, 2nd series, vol. 10.Google Scholar
Fine, K. 1985. Reasoning with Arbitrary Objects. Oxford: Basil Blackwell.Google Scholar
Gabbay, D. and Guenthner, F., eds. 1986. Handbook of Philosophical Logic, vol. 3. Dordrecht: Reidel.CrossRefGoogle Scholar
Glivenko, W. 1928. “Sur la Logique de M. Brouwer.”Bulletin Académie Royale de Belgique 14:225–28.Google Scholar
Glivenko, W. 1929. “Sur quelques points de la logique de M. Brouwer.” Bulletin Academie Royale de Belgique 15:183–88.Google Scholar
Harper, W., and Meerbote, R., eds. 1984. Kant on Causality, Freedom and Objectivity. Minneapolis: University of Minnesota Press.Google Scholar
Heyting, A. 1930.“Die formalen Regeln der intuitionistischen Logik.” Sitzungs-berichte derpreuszischen Akademie von Wissenschaften, physikalisch mathe-matische Klasse, 4256.Google Scholar
Hilbert, D. 1901. “Mathematische Probleme.” Vortrag, gehalten auf dem interna-tionalen Mathematiker-Kongress zu Paris, 1900. Archive der Mathematik und Physik, 3rd series.Google Scholar
Hilbert, D. [1905] 1967. “Über die Grundlagen der Logik und der Arithmetik.” In Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13 August, 1904, 174–85. Leipzig, Tuebner. Translated in Heijenoort, van 1967, 129–38.Google Scholar
Hilbert, D. 1918. “Axiomatisches Denken.” Mathematische Annalen 78:405–15.CrossRefGoogle Scholar
Hilbert, D. 1922. “Neubegründung der Mathematik, Erste Mitteilung.” Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 1:157–77CrossRefGoogle Scholar
Hilbert, D. 1923. “Die logischen Grundlagen der Mathematik.” Mathematische Annalen 88:15165.CrossRefGoogle Scholar
Hilbert, D. [1926] 1967. “Uber das Unendliche.” Mathematische Annalen 95:161–90. Translated in Heijenoort, van 1967, 367–92.CrossRefGoogle Scholar
Hilbert, D. [1928] 1967. “Die Grundlagen der Mathematik.” Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universitä;t 6:6585. Translated in Heijenoort, van 1967, 464–79.CrossRefGoogle Scholar
Hilbert, D., and Bernays, P.. 1934. Grundlagen der Mathematik, vol. 1. Berlin: Springer.Google Scholar
Hilbert, D., and Bernays, P.. 1939. Grundlagen der Mathematik, vol. 2. Berlin: Springer.Google Scholar
Kant, I. Critique of Pure Reason.Google Scholar
Kemp-Smith, Norman. 1962. A Commentary to Kant's Critique of Pure Reason, 2nd ed. New York: Humanities Press.Google Scholar
Kino, A., Myhill, J., and Vesley, R. E, eds. 1970. Intuitionism and Proof Theory. Amsterdam: North Holland Publishing.Google Scholar
Kleene, S. C. 1950. Introduction to Metamathematics. Princeton, N.J.: Van Nostrand.Google Scholar
Kolmogorov, N. 1925. “On the Principle of Excluded Middle” (in Russian). Translated in Heijenoort, van 1967.Google Scholar
Kreisel, G. 1967. “ Informal Rigour and Completeness Proofs.” In Lakatos 1967.CrossRefGoogle Scholar
Lakatos, I., ed. 1967. Problems in the Philosophy of Mathematics. Amsterdam: North Holland Publishing.Google Scholar
Levy, P. 1926a. “Critique de la logique empirique: Réponse à M. Robin Wavre.” Revue de Méetaphysique et de Morale 33:545–51.Google Scholar
Levy, P. 1926b. “Sur le prinicipe du tiers exclu et sur les theorems non-susceptibles de demonstration.” Revue de Métaphysique et de Morale 33:253–58.Google Scholar
Levy, P. 1927. “Logique classique, Logique Brouwerienne et Logique mixte.” Bulletin Académie Royale de Belgique 14:256–66.Google Scholar
Poincare, H. 1906. “Les Mathématiques et la logique,” Revue de Métaphysique et de morale 13: 815–35, 14: 1734.Google Scholar
Posy, C. J. 1980. “On Brouwer's Definition of Unextendable Order.” History and Philosophy of Logic 1:129–49.CrossRefGoogle Scholar
Posy, C. J. 1983. “Dancing to the Antinomy: A Proposal for Transcendental Idealism.” American Philosophical Quarterly 20:8194.Google Scholar
Posy, C. J. [1984] 1992. “Kant's Mathematical Realism.” The Monist 66:115–34. Reprinted in Posy 1992.CrossRefGoogle Scholar
Posy, C. J. 1984. “Transcendental Idealism and Causality.” In Harper, and Meerbote, 1984, 20 81–41.Google Scholar
Posy, C. J. 1986. “Where Have All the Objects Gone?Southern Journal of Philosophy 25, supplement:1736.CrossRefGoogle Scholar
Posy, C. J. 1989. “Autonomy, Omniscience and the Ethical Imagination.” In Yovel 1989, 106–34.Google Scholar
Posy, C. J., ed. 1992. Kant's Philosophy of Mathematics: Modern Essays. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Posy, C. J. 1997. “Between Leibniz and Mill: Kant and the Rhetoric of Psychologism.” Philosophy and Rhetoric 30:243–70.Google Scholar
Posy, C. J. Forthcoming. “Epistemology, Ontology and the Continuum.”Google Scholar
Reid, C. 1986. Hilbert and Courant. Berlin: Springer.CrossRefGoogle Scholar
Rose, H. E., and Shepherdson, J. C., eds. 1973. Logic Colloquium 73. Amsterdam: North Holland Publishing.Google Scholar
Russell, B. The Principles of Mathematics.Google Scholar
Salanskis, J.-M., and Sinaceur, H., eds. 1992. Le Labrynthe du Continu. Berlin: Springer.Google Scholar
Spector, C. 1962. “Provably Recursive Functionals of Analysis: A Consistency Proof of Analysis by an Extension of Principles Formulated in Current Intuitionistic Mathematics.” In Dekker 1962.Google Scholar
Troelstra, A. S. 1969. Principles of Intuitionism: Lecture Notes in Mathematics 95. Berlin: Springer.CrossRefGoogle Scholar
van Dalen, D. 1986. “Intuitionistic Logic.” In Gabbay and Guenthner 1986, 225340.Google Scholar
van Dalen, D. 1990. “The War of the Frogs and the Mice or the Crisis of the Mathematische Annalen.”.The Mathematical Intelligencer 12:1731.CrossRefGoogle Scholar
van Dalen, D. 1997. “Connected Is the Intuitionistic Continuum.” Journal of Symbolic Logic 62: 1147–50.CrossRefGoogle Scholar
van Dalen, D. Forthcoming. “From Brouwerian Counter Examples to the Creating Subject.” Studia Logica.Google Scholar
van Heijenoort, J. ed. 1967. From Frege to Gödel: A Source Book in Mathematical Logic, 1897–1931. Cambridge, Mass.: Harvard University Press.Google Scholar
van Rootselaar, B. 1970. “On Subjective Mathematical Assertions.” In Kino et al. 1970, 186–96.Google Scholar
van Stigt, W. 1990. Brouwer's Intuitionism. Amsterdam: North Holland Publishing.Google Scholar
Wavre, R. 1924. “Y-a-t-il une crise des mathéematique? A propos de la notion d’existence et d’une application suspect du principe du tiers exclu.” Revue de Métaphysique et de Morale 31:435–70.Google Scholar
Wavre, R. 1926a. “Logique Formelle et logique empiriste.” Revue de Métaphysique et de Morale 33:6575.Google Scholar
Wavre, R. 1926b. “Sur la principe du tiers exclu.” Revue de Métaphysique et de Morale 33:425–30.Google Scholar
Weyl, H. 1944. “David Hilbert and His Mathematical Work.” Bulletin of the American Mathematical Society 50.CrossRefGoogle Scholar
Yovel, Y., ed. 1989. Kant's Practical Philosophy Reconsidered. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar