Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T16:56:28.875Z Has data issue: false hasContentIssue false

Wronski's Foundations of Mathematics

Published online by Cambridge University Press:  30 August 2016

Roi Wagner*
Affiliation:
ETH Zürich E-mail: [email protected]

Argument

This paper reconstructs Wronski's philosophical foundations of mathematics. It uses his critique of Lagrange's algebraic analysis as a vignette to introduce the problems that he raised, and argues that these problems have not been properly appreciated by his contemporaries and subsequent commentators. The paper goes on to reconstruct Wronski's mathematical law of creation and his notions of theory and techne, in order to put his objections to Lagrange in their philosophical context. Finally, Wronski's proof of his universal law (the expansion of a given function by any series of functions) is reviewed in terms of the above reconstruction. I argue that Wronski's philosophical approach poses an alternative to the views of his contemporary mainstream mathematicians, which brings up the contingency of their choices, and bridges the foundational concerns of early modernity with those of the twentieth-century foundations crisis. I also argue that Wronski's views may be useful to contemporary philosophy of mathematical practice, if they are read against their metaphysical grain.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D'Arcy, Philippe. 1970. Hoene-Wronski: Une philosophie de la création. Paris: Seghers.Google Scholar
Banach, Stephan. 1939. “Über das 'Loi Suprême de J. Hoene-Wroński.” Bulletin International de l'Académie Polonaise des sciences et des lettres, Ser. A, 1–10.Google Scholar
Carnot, Lazare. 1832. Reflexions on the Metaphysical Principles of the Infinitesimal Analysis. Oxford: J. H. Parker.Google Scholar
Cauchy, Augustin Louis. 2009. Cauchy's Cours d'Analyse: An Annotated Translation. New York: Springer.Google Scholar
Dickstein, Samuel. 1896. Hoene Wroński – Jego Życie I Prace [Hoene Wroński – His Life and Work]. Krakow: Nakładem Akademii Umiejętności.Google Scholar
Dickstein, Samuel. 1892–1896. “Sur les Découvertes Mathématiques de Wronski.” Biblioteca Mathematica 6:4852, 85–90; 7:9–14; 8:49–54, 85–87; 10:5–12.Google Scholar
Ferraro, Giovanni. 2007. “Convergence and Formal Manipulation in the Theory of Series from 1730 to 1815.” Historia Mathematica 34:6288.Google Scholar
Grattan-Guinness, Ivor. 1990. Convolutions in French Mathematics, 1800-1840, vol 2. Basel: Birkhäuser.Google Scholar
Jahnke, Hans Niels. 1990. Mathematik und Bildung in der Humboldtschen Reform. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
Jahnke, Hans Niels.1993. “Algebraic Analysis in Germany, 1780-1840: Some Mathematical and Philosophical Issues.” Historia Mathematica 20:265284.Google Scholar
Lagrange, Charles Henri. 1884a. “Forme générale du reste dans l'expression d'une fonction au moyen d'autres fonctions.” Comptes Rendus de l'Académie des Sciences de Paris 98:14221425.Google Scholar
Lagrange, Charles Henri. 1884b. “Démonstration elémentaire de la loi suprême de Wronski.” Mémoires Couronnés et Mémoires des Savants Etrangers Publiés par l'Académie Royale des Sciences, des Lettres et de Beaux-Arts de Belgique 47.Google Scholar
Lagrange, Joseph-Louis. 1797. Théorie des fonctions analytiques contenant les principes du calcul différentiel. Paris: Ecole Polytechnique.Google Scholar
Lagrange, Joseph-Louis. 1882. Oeuvres de Lagrange, vol. XIII. Paris: Gauthier-Villars.Google Scholar
Laplace, Pierre Simon. 1812. Théorie analytique des probabilités. Paris: Courcier.Google Scholar
Medvedev, Fyodor A. 1991. Scenes from the History of Real Functions. Basel: Birkhaeuser.Google Scholar
Muir, Thomas. 1882. A Treatise on the Theory of Determinants. London: Macmillan.Google Scholar
Murawski, Roman. 2005. “Genius or Madman? On the Life and Work of J. M. Hoene-Wroński.” In European Mathematics in the Last Centuries, edited by Więsław, W., 7586. Wrocław: Typoscript Studio Wydawniczo-Typograficzne Andrzej Ploch.Google Scholar
Murawski, Roman. 2006. “The Philosophy of Hoene-Wroński.” Organon 35:144150.Google Scholar
Phili, Christine. 1996. “La loi suprême de Hoëné-Wronski: La rencontre de la philosophie et des mathématiques.” In Paradigms and mathematics, edited by Ausejo, Elena and Ormigon, Mariano, 289308. Madrid: Siglo XXI de España Editores.Google Scholar
Poisson, Siméon Denis. 1805. “Démonstration du théorême de Taylor.” Correspondance sur l'Ecole Imperiale Polytechnique 1 (3):5255.Google Scholar
Pragacz, Piotr. 2008. “Notes on the Life and Work of Józef Maria Hoene-Wroński.” In Algebraic Cycles, Sheaves, Shtukas, and Moduli, edited by Pragacz, Piotr, 120. Basel: Birkhäuser.Google Scholar
Schubring, Gert. 2005. Conflicts between Generalization, Rigor and Intuition. New York: Springer.CrossRefGoogle Scholar
Séguin, Philippe. 2005. “La recherche d'un fondement absolu des mathématiques par l'Ecole combinatoire de C.F. Hindenburg (1741-1808).” Philosophia Scientiae 5:6179.Google Scholar
Servois, François Joseph. 1814. “Réflexions sur les divers systèmes d'exposition des principes du calcul cifférentiel, et, en particulier, sur la doctrine des infiniment petits.” Annales de Gergonne 5:141170.Google Scholar
Wagner, Roy. 2014. “Wronski's Infinities.” HOPOS (History of Philosophy of Science) 4:2661.Google Scholar
Warrain, Francis. 1925. L'armature métaphysique de Hoëne Wronski. Paris: Alcan.Google Scholar
Warrain, Francis. 1933–1938. L'oeuvre philosophique de Hoené Wronski: Textes, commentaires et critique, 3 vols. Paris: Vega.Google Scholar
West, Emil. 1886. Exposé des méthodes générales en mathématiques: résolution et intégration des équations, applications diverses d'Après Hoénë Wronski. Paris: Gauthier-Villars.Google Scholar