Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:32:50.928Z Has data issue: false hasContentIssue false

The Withering Immortality of Nicolas Bourbaki: A Cultural Connector at the Confluence of Mathematics, Structuralism, and the Oulipo in France

Published online by Cambridge University Press:  26 September 2008

David Aubin
Affiliation:
Centre de Recherche en Histoire des Science et des Techniques (CHRST) Cité des Sciences et de l' Industrie, Paris

Abstract

The group of mathematicians known as Bourbaki persuasively proclaimed the isolation of its field of research — pure mathematics — from society and science. It may therefore seem paradoxical that links with larger French cultural movements, especially structuralism and potential literature, are easy to establish. Rather than arguing that the latter were a consequence of the former, which they were not, I show that all of these cultural movements, including the Bourbakist endeavor, emerged together, each strengthening the public appeal of the others through constant, albeit often superficial, interaction. This codependency is partly responsible for their success and moreover accounts for their simultaneous fall from favor, which, however, can clearly be seen as also stemming from different internal problems. To understand this dynamics, I argue that Bourbaki's role can best be captured by using the notion of cultural connector, which I introduce here.

Type
Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andler, Martin. 1994. “Les mathématiques à l' Ecole normale supérieure au XXe siècle: une esquisse.” In Ecole normale supéorieure: Le livre du bicentenaire, edited by Sirinelli, Jean-François, 351404. Paris: Presses universitaires de France.Google Scholar
L'Arc. 1965. No. 26, special issue “Lévi-Strauss,” March.Google Scholar
Arnol'd, Vladimir I. [1981] 1992. Catastrophe Theory: Third, Revised, and Expanded Edition. Translated by Wassermann, G. S., based on translation by Thomas, R. K.. Berlin: Springer.CrossRefGoogle Scholar
Arnol'd, Vladimir I. 1995. “Will Mathematics Survive?: A Report from the Zurich Congress.” Mathematical Intelligencer 17(3):610.Google Scholar
Arvonny, Maurice. 1980. “Quarante ans de Bourbaki: Le célèbre mathématicien est toujours immortel, mais il a vieilli.” Le Monde, 9 April, 15.Google Scholar
Aubin, David. 1995. “The Catastrophe Theory of René Thom: Topology, Embryology, and Structuralism.” In Wise, in preparation.Google Scholar
Aubin, David. 1998. A Cultural History of Catastrophes and Chaos: Around the Institut des Hautes Études Scientifiques, Ph.D. thesis. Princeton University.Google Scholar
Aubin, Jean-Pierre, and Cornet, B.. 1976. “Rapport sur la situation de la recherche mathématique en France.” Gazette des mathématiciens 7:1873.Google Scholar
Auzias, Jean-Marie. 1967. Clefs pour le structuralisme. Paris: Seghers.Google Scholar
Auzias, Jean-Marie, et al. 1970. Structuralisme et marxisme. Paris: Union générale d'éditions.Google Scholar
Bachelard, Gaston. 1971. Epistémologie: textes choisis. Edited by Lecourt, Dominique. Paris: Presses universitaires de France.Google Scholar
Barbosa de Almeida, Mauro W. 1990. “Symmetry and Entropy: Mathematical Metaphors in the Work of Lévi-Strauss.” Current Anthropology 31:367–85.Google Scholar
Barbut, Marc. 1966. “Sur le sens du mot structure en mathématiques.” Les Temps modernes 22(246), special issue on “Problèmes du structuralisme”: 791814.Google Scholar
Bastide, Roger, ed. 1962. Sens et usages du terme structure dans les sciences humaines et sociales, Janua linguarum 16. The Hague: Mouton.Google Scholar
Beaulieu, Liliane. 1989. Bourbaki: Une histoire du groupe de mathématiciens français et de ses travaux (1934–1944). Ph.D. thesis, Université de Montréal.Google Scholar
Beaulieu, Liliane. 1993. “A Parisian Café and Ten Proto-Bourbaki Meetings (1934–1935).” Mathematical Intelligencer 15(1): 2735.Google Scholar
Beaulieu, Liliane. 1994. “Dispelling a Myth: Questions and Answers about Bourbaki's Early Work, 1934–1944.” In The Intersection of History and Mathematics, edited by Chikara, Sasaki, Mitsuo, Sugiura, and Dauben, Joseph W., 241–52. Basel: Birkhäuser.Google Scholar
Beaulieu, Liliane. — Forthcoming a. Bourbaki: History and Legend. Berlin: Springer.Google Scholar
Beaulieu, Liliane. — Forthcoming b. “Jeux d'esprit et jeux de mémoire chez N. Bourbaki.”Google Scholar
Beauvoir, Simone de. 1949. Review of Lévi-Strauss 1949. Temps modernes 5(49):943–49.Google Scholar
Benoist, Jean-Marie. [1975] 1978. The Structural Revolution. London: Weidenfeld and Nicholson.Google Scholar
Bens, Jacques. 1980. OuLiPo, 1960–1963. Paris: Christian Bourgois.Google Scholar
Benveniste, Emile. 1962. “Structure' en linguistique.” In Bastide 1962, 31–39.Google Scholar
Berger, Marcel. 1980. “Note sur le flux de survie de la recherche mathématique en France.” Gazette des mathématiciens no. 13: 513.Google Scholar
Biagioli, Mario. 1993. Galileo, Courtier: The Practice of Science in the Culture of Absolutism. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
Bourbaki, N. 1939. “Mode d'emploi de ce traité,”, in Théorie des ensembles (Fascicule de résultats). Eléments de mathématique, part 1, book 1. Paris: Hermann.Google Scholar
Bourbaki, N. — [1948] 1971. “The Architecture of Mathematics.” In Le Lionnais [1948,1962], 1971 1:2336.Google Scholar
Bourbaki, N. 1949. “Foundations of Mathematics for the Working Mathematician.” Journal of Symbolic Logic 14:18.CrossRefGoogle Scholar
Bourbaki, N. 1950. “The Architecture of Mathematics.” The American Mathematical Monthly 57:22232.Google Scholar
Bourbaki, N. 1954–57. Théorie des ensembles. Chap. 1: “Description des mathématiques formelles”(1954); chap. 2: “Théorie des ensembles”(1954); chap. 3: “Ensembles ordonnés, cardinaux, nombres entiers” (1956); chap. 4: “Structures” (1957). Paris: Hermann.Google Scholar
Bourbaki, N. — [1960] 1994. Elements of the History of Mathematics. Translated by Meldrum, John. Berlin: Springer.Google Scholar
Bourbaki, N. 1968. Theory of Sets. Paris: Hermann, and Reading: Addison-Wesley.Google Scholar
Carson, Cathryn. 1995. “Who Wants a Postmodern Physics?Science in Context 8(4):635–55.Google Scholar
Cartan, Henri. 1980. “Nicolas Bourbaki and Contemporary Mathematics.” The Mathematical Intelligencer 2:175–80.Google Scholar
Charbonnier, Georges. 1962. Entretiens avec Raymond Queneau. Paris: Gallimard.Google Scholar
Chevalley, Claude. 1935. “Variations du style mathématique.” Revue de mdtaphysique et de morale no. 3:375–84.Google Scholar
Chevalley, Claude, and Arnaud, Dandieu. 1932. “Logique hilbertienne et psychologic.” Revue philosophique de France et de l'étranger 57:399411.Google Scholar
Choquet, Gustave. 1996. “Témoignage sur Paul André Meyer.” Gazette des mathématiciens no. 68, 1314.Google Scholar
Chouchan, Michéle. 1995. Nicolas Bourbaki: Faits et légendes. Paris: Editions du Choix.Google Scholar
CNRS. 1982. “Rapport de conjoncture 1981.” Gazette des mathématiciens 20:16110.Google Scholar
Corry, Leo. 1989. “Linearity and Reflexivity in the Growth of Mathematical Knowledge.” Science in Context 3:409–40.Google Scholar
Corry, Leo. 1992. “Nicolas Bourbaki and the Concept of Mathematical Structure.” Synthese 92:315–48.CrossRefGoogle Scholar
Corry, Leo. 1996. Modern Algebra and the Rise of Mathematical Structure. Basel: Birkhäuser.Google Scholar
Corvez, Maurice. 1969. Les Structuralistes, les linguistes… Michel Foucault, Claude Lévi-Strauss, Jacques Lacan, Louis Althusser, les critiques littéraires. Paris: Aubier-Montaigne.Google Scholar
Courrège, Philippe. [1965] 1971. “Un modèle mathématique des structures élémentaires de parenté.” L'Homme 5(3–4):248–90. Reprinted in Anthropologie et calcul, edited by Philippe Richard and Robert Jaulin, 126–81. Paris: Union générale d'éditions, coll. [10/18.]CrossRefGoogle Scholar
Dahan Dalmedico, Amy. 1995. “Polytechnique et l' Ecole française de mathématiques appliquées.” La France des X, deux siècles d'histoire, edited by Belhoste, Bruno, et al. Paris: Economica.Google Scholar
Dahan Dalmedico, Amy. 1996. “L'essor des mathématiques appliquées aux Etats-Unis: l'impact de la seconde guerre mondiale.” Revue d'histoire des mathématiques 2:149213.Google Scholar
Dahan Dalmedico, Amy. 1997. “Les mathématiques au XXème siècle.” Science in the Twentieth Century. Edited by Krige, John and Pestre, Dominique. London: Harwood.Google Scholar
Daston, Lorraine. 1988. Classical Probability in the Age of the Enlightenment. Princeton: Princeton University Press.CrossRefGoogle Scholar
Desanti, Jean. 1965. “Remarques sur la connection des notions de genèse et structure en mathématiques.” In Gandillac et al. 1965, 143–59.Google Scholar
Descombes, Vincent. [1979] 1980. Modern French Philosophy. Translated by Scott-Fox, L. and Harding, J. M.. Cambridge: Cambridge University Press.Google Scholar
Dieudonné, Jean. 1977. Panorama des mathematiques pures. Le choix bourbachique. Paris: Gauthier-Villars.Google Scholar
Dosse, François. 1991–92. Histoire du structuralisme, 2vols. Paris: La Découverte.Google Scholar
Ducrot, Oswald, Tzvetan, Todorov, Dan, Sperber, Moustafa, Safouan, and François, Wahl. 1968. Qu'est-ce que le structuralisme? Paris: Seuil.Google Scholar
Dumouchel, Paul, and Jean-Pierre, Dupuy, eds. 1983. L'Auto-Organisation: De la physique au politique. Paris: Seuil.Google Scholar
L'Esprit, . 1963. Vol. 31 (322), special issue, “La Pensée sauvage et le structuralisme”: 545–653.Google Scholar
L'Esprit, . 1967. Vol. 35 (360), special issue, “Structuralismes, idéologie et méthode”: 769–901.Google Scholar
Fages, J.-B. 1967. Comprendre le structuralisme. Toulouse: Privat.Google Scholar
Fang, Jon. 1970. Bourbaki: Towards a Philosophy of Mathematics I. Hauppauge, N.Y.: Paideia Press.Google Scholar
Ferrand, Jacqueline. 1980. “Rapport d'activité.” Gazette des mathématiciens, no. 14: 29.Google Scholar
Foucault, Michel. [1969] 1994. “Qu'est-ce qu'un auteur?Bulletin de la société française de philosophie 63(3) (1969):73104. Reprinted in Dits et écrits, 1954–1988, vol. 1, edited by Daniel Defert and François Ewald, 789–821. Paris: Gallimard.Google Scholar
Galison, Peter. 1994. “The Ontology of the Enemy: Norbert Wiener and the Cybernetic Vision.” Critical Inquiry 21:228–66.Google Scholar
Gandillac, Maurice de, Lucien, Goldmann, and Jean, Piaget, eds. 1965. Entretiens sur les notions de genése et de structure, Colloque de Cerisy-la-Salle, juillet-août 1959. Paris and The Hague: Mouton.CrossRefGoogle Scholar
Gardner, Howard. 1981. The Quest for the Mind: Piaget, Lévi-Strauss, and the Structuralist Movement, 2nd ed. Chicago: The University of Chicago Press.Google Scholar
Gayon, Jean. 1989. “Génétique, psychologie génétique et épistémologie génétique dans l'oeuvre de Jean Piaget (1896–1980): une ambiguïté remarquable.” In L'Ordre des caractéres. Aspects de l'hérédité dans l'histoire des sciences de l'homme, edited by Bénichou, Claude, 147–73. Paris: Vrin.Google Scholar
Goldmann, Lucien. 1962. “Introduction générale.” In Bastide 1962, 722.Google Scholar
Goldmann, Lucien. 1965. “Le concept de structure significative en histoire de la culture.” In Gandillac et al. 1965, 124–35.Google Scholar
Grothendieck, Alexandre. 1985. Récoltes et semailles: Réflexions et témoignage sur un passé de mathématicien, 7 vols. Montpellier: Université du Languedoc and CNRS. Manuscript, Fine Library, Princeton University.Google Scholar
Halmos, Paul R. 1957. “Nicolas Bourbaki.” Scientific American, 196(May): 8897.CrossRefGoogle Scholar
Harland, Richard. 1987. Superstructuralism: The Philosophy of Structuralism and Post-Structuralism. London: Methuen.Google Scholar
Hilbert, David. [1900] 1902. “Mathematical Problems.” Bulletin of the American Mathematical Society 8:437–79, authorized translation by Winston Newson, Mary.Google Scholar
Holenstein, Elmar. [1974] 1976. Roman Jakobson's Approach to Language: Phenomenological Structuralism. Translated by Catherine, and Schelbert, Tarcisius. Bloomington: Indiana University Press.Google Scholar
Houzel, Christian. 1979. “Les mathématiciens retournent au concret.” La Re–cherche 10:508–9.Google Scholar
Houzel, Christian, — ed. 1985. Rapport de prospective en mathématiques. Paris: Editions du CNRS.Google Scholar
Jakobson, Roman. [1961] 1971. “Retrospect (1961).” In selected Writings I. The Hague: Mouton.Google Scholar
Jakobson, Roman. — [1976] 1978. Six Lectures on Sound and Meaning. Translated by Mepham, John. Hassocks, UK: Harvester Press.Google Scholar
Lax, Peter D. 1989. “The Flowering of Applied Mathematics in America.” A Century of Mathematics in America, Part II, edited by Duren, Peter with Askey, Richard A. and Merzbach, Uta C., 455–66. Providence: American Mathematical Society.Google Scholar
Le Lionnais, François, ed. [1948, 1962] 1971. Great Currents of Mathematical Thought. Translated by Hall, R. A. and Bergmann, Howard G., 2 vols. New York: Dover.Google Scholar
Le Lionnais, François. 1962. Review of Queneau 1962. Dossiers du Collége de Pataphysique, nos. 18/19, 7 Clinamen 89 EP [vulg. 29 mars 1962]: 68.Google Scholar
Le Lionnais, François. 1973. “Quelques structures et notions mathématiques.” In Oulipo 1973, 295–98.Google Scholar
Le Lionnais, François. 1975. “Queneau et les mathématiques.” Raymond Queneau, edited by Bergens, Andrée. Paris: l' Herne.Google Scholar
Lelong, Pierre. 1963. “Questions d'actualité et de prospective.” Gazette des mathématiciens 2(3): 13.Google Scholar
Lévi-Strauss, Claude. 1949. Les Structures élémentaires de la parenté. Paris: Presses universitaires de France.Google Scholar
Lévi-Strauss, Claude. — [1949] 1969. The Elementary Structures of Kinship. Translated by Harle Bell, James, edited by Richard von Sturmer, John and Needham, Rodney. Boston: Beacon.Google Scholar
Lévi-Strauss, Claude. — [1952] 1958. “Social Structure.” Anthropology To-Day: Wener-Gren Foundation International Symposium on Anthropology, edited by Kroeber, A. L.. New York: Columbia University Press. Reproduced in Anthropologie structurale, 303–51. Paris: Plon. See Lévi-Strauss [1958] 1963.Google Scholar
Lévi-Strauss, Claude. 1954. “The Mathematics of Man.” International Social Science Bulletin 6(4):581–90.Google Scholar
Lévi-Strauss, Claude. — [1958] 1963. Structural Anthropology. Translated by Schoepf, Brooke G.. New York: Basic.Google Scholar
Lévi-Strauss, Claude. — [1983] 1985. The View from Afar. Translated by Neugroschel, Joachim and Hoss, Phobe. New York: Basic.Google Scholar
Lévi-Strauss, Claude, and Didier, Eribon. [1988] 1991. Conversations with Claude Lévi-Strauss. Translated by Wissing, Paula. Chicago: The University of Chicago Press.Google Scholar
Lévy-Leblond, Jean-Marc. 1968. “Physique et mathématique.” Encyclopaedia universalis 13:48.Google Scholar
Lévy-Leblond, Jean-Marc, and Alain, Jaubert, eds. 1975. (Auto)critique de la science. Paris: Seuil, coll. “Points/Sciences.”Google Scholar
Lyotard, Jean-François. [1979] 1984. The Postmodern Condition. Translated by Bennington, G. and Massumi, B.. Minneapolis: University of Minnesota Press.Google Scholar
Malgrange, Bernard. 1975. “Quelques mots sur les derniéres sessions du Comité consultatif,” and “A propos d'un article de J. Dieudonné.” Gazette des mathématiciens 3:3237.Google Scholar
Mandelbrot, Benoît. 1956. “Sur la définition abstraite de quelques degrés d'équilibre.” Etudes d'épistémologie génétique 2:126.Google Scholar
Mandelbrot, Benoît. 1957. “Linguistique statistique macroscopique.” Etudes d'épistémologie génétique 3:178.Google Scholar
Mandelbrot, Benoît. 1958. “Quelques problèmes de la théorie de l'observation dans le contexte des théories modernes de l'induction des statisticiens.” Etudes d'épistémologie génétique 5:2947.Google Scholar
Mandelbrot, Benoît. — [1975] 1977. Fractals: Form, Chance, and Dimension. San Francisco: Freeman.Google Scholar
Mandelbrot, Benoît. 1986. “Comment j'ai découvert les fractales.” La Recherche 17:420–24.Google Scholar
Mandelbrot, Benoît. 1987. “Towards a Second Stage of Indeterminism in Science.” Interdisciplinary Science Review 12:117–27.Google Scholar
Mandelbrot, Benoît. — 1989. “Chaos, Bourbaki, and Poincaré.” Mathematical Intelligencer 11(3):1012.Google Scholar
Mandelbrot, Benoît, and Anthony, Barcellos. 1985. In Mathematical People: Profiles and Interviews, edited by Albers, Donald J. and Alexanderson, G. L., 207–25. Boston: Birkhäuser.Google Scholar
Marchal, André. 1962. “L'attitude structuraliste et le concept de structure en économic politique.” In Bastide 1962, 63–67.Google Scholar
Merquior, J. G. 1986. From Prague to Paris: A Critique of Structuralist and Post-Structuralist Thought. London: Verso.Google Scholar
Morin, Edgar. 1977. La Méthods. 1: La nature de la nature. Paris: Seuil.Google Scholar
Motte, Warren F., ed. 1986. Oulipo: A Primer of Potential Literature. Lincoln, Nebraska: University of Nebraska Press.Google Scholar
Nordon, Didier. 1978. “Sommes-nous tous pareils?Gazette des mathématiciens 10:6589.Google Scholar
Oulipo, . 1973. La Littérature potentielle (créations, re-créations, récréations). Paris: Gallimard.Google Scholar
Parain-Vial, Jeanne. 1969. Analyses structurales et idéologies structuralistes. Toulouse: Privat.Google Scholar
Pavel, Thomas G. 1989. The Feud of Language: A History of Structuralist Thought. Translated by Jordan, L. and Pavel, T. G.. Oxford: Basil Blackwell.Google Scholar
Piaget, Jean. 1949. Traité de logique: Essai de logistique opératoire. Paris: Armand Colin.Google Scholar
Piaget, Jean. 1950. Introduction à l'épistémologie génétique., 3 vols. Paris: Presses universitaires de France.Google Scholar
Piaget, Jean. 1955. “Les structures mathématiques et les structures opératoires de l'intelligence.” In L'Enseignement des mathématiques, 1133. Neuchatel: Dulachaux & Niestlé.Google Scholar
Piaget, Jean. 1965. “Genése et structure en psychologic.” In Gandillac et al. 1965, 37–61.Google Scholar
Piaget, Jean. — ed. 1967. Logique et connaissance humaine. Paris: Gallimard.Google Scholar
Piaget, Jean. — [1968] 1970. Structuralism. Translated by Chaninah, Maschler. New York: Basic.Google Scholar
Piaget, Jean. 1970. Genetic Epistemology. Translated by Duckworth, Eleanor. New York: Columbia University Press.Google Scholar
Pomian, Krzysztof, ed. 1990. La Querelle du déterminisme: Philosophie de la science d'aujourd'hui. Paris: Gallimard.Google Scholar
Pouillon, Jean. 1966. “Présentation: un essai de définition.” Les Temps modernes 22 (246):769–90.Google Scholar
Queneau, Raymond. [1948] 1971. “The Place of Mathematics in the Classification of the Sciences.” In Le Lionnais [1948] 1971 2:7377.Google Scholar
Queneau, Raymond. 1961. Cent mille milliards de poémes. Paris: Gallimard.Google Scholar
Queneau, Raymond. 1962. “Bourbaki et les mathématiques de demain.” Critique 18 (176):318. Repr. Bords. Paris: Hermann, 1963.Google Scholar
Queneau, Raymond. 1967. “Science and Literature.” Times Literary Supplement, 28 Sept.: 863–64.Google Scholar
Queneau, Raymond. 1968. “Théorie des nombres: sur les suites s-additives.” Comptes-rendus de I'Académie des sciences de Paris A 266:957–58.Google Scholar
Queneau, Raymond. 1972. “Sur les suites s-additives.” Journal of Combinatorial Theory 13:3171.Google Scholar
Régnier, André. 1971. “De la théorie des groupes à la pensée sauvage.” Anthropologie et calcul, edited by Richard, P. and Jaulin, R., 271–98. Paris: Union générate d'éditions.Google Scholar
Régnier, André. 1974. La Crise du langage scientifique. Paris: Anthropos.Google Scholar
Reid, Constance. 1986. Hilbert — Courant. New York: Springer.Google Scholar
Rosenstiehl, Pierre. 1996. “La mathematique et l'Éicole.” Une École pour les Sciences Sociales: De la VIe Section à l'École des hautes études en sciences sociales, edited by Revel, Jacques of Nathan Wachtel, 167–84. Paris: Éditions du Cerf and Éditions de l' EHESS.Google Scholar
Rosnay, Joël de. 1975. Le Macroscope: Vers une vision globale. Paris: Seuil.Google Scholar
Roubaud, Jacques. 1989. “Le grand incendie de Londres.” Paris: Seuil.Google Scholar
Roubaud, Jacques. 1997. Mathématique. Paris: Seuil.Google Scholar
Roudinesco, Elisabeth. 1993. Jacques Lacan: Esquisse d'une vie, histoire d'un système de pensée. Paris: Fayard.Google Scholar
Ruelle, David. 1969. Statistical Physics: Rigorous Results. New York: W. A. Benjamin.Google Scholar
Ruelle, David. 1991. Chance and Chaos. Translated by Ruelle, David. Princeton, N.J.: Princeton University Press.Google Scholar
Ruelle, David, and Floris, Takens. 1971. “On the Nature of Turbulence.” Communications in Mathematical Physics 20:167–92.Google Scholar
Saint-Sernin, Bertrand. 1995. La Raison au XXe siècle. Paris: Seuil.Google Scholar
Schaffer, Simon. 1995. “Accurate Measurement Is an English Science.” In The Values of Precision, edited by Wise, M. Norton, 135–72. Princeton, N.J.: Princeton University Press.Google Scholar
Schwartz, Laurent. 1997. Un mathématicien aux prises avec le siècle. Paris: Odile Jacob.Google Scholar
Serres, Michel. 1968a. Hermès I: La communication. Paris: Minuit.Google Scholar
Serres, Michel. 1968b. Le Système de Leibniz et ses modèles mathématiques, 2 vols. Paris: Presses universitaires de France.Google Scholar
Serres, Michel. 1972. Hermès II: L'interférence. Paris: Minuit.Google Scholar
Serres, Michel. 1977a. Hermès IV: La distribution. Paris: Minuit.Google Scholar
Serres, Michel. 1977b. La Naissance de la physique dans le texte de Lucrèce: Fleuves et turbulences. Paris: Minuit.Google Scholar
Serres, Michel. 1980. Hermès V: Le passage du Nord-Ouest. Paris: Minuit.Google Scholar
Serres, Michel. — [1982] 1995. Genesis. Translated by James, Geneviève and Nielsen, James. Ann Arbor: University of Michigan.Google Scholar
Serres, Michel, and Bruno, Latour. [1992] 1995. Conversations on Science, Culture, and Time. Translated by Lapidus, Roxanne. Ann Arbor: University of Michigan.Google Scholar
Simonin, Anne, and Hélène, Clastres, eds. 1989. Les Idées en France, 1945–1988: Une chronologic. Paris: Gallimard.Google Scholar
Smith, Crosbie, and Wise, M. Norton. 1989. Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge: Cambridge University Press.Google Scholar
Synthèse, XXe Semaine de. 1957. Notion de structure et structure de la connaissance. Paris: Albin Michel.Google Scholar
Thom, René. [1972] 1975. Structural Stability and Morphogenesis: Outline of a General Theory of Models. Translated by Fowler, D. H.. Reading: Benjamin.Google Scholar
Thom, René. 1972. “Structuralism and Biology.” In Towards a Theoretical Biology, vol. 4, edited by Hal Waddington, Conrad, 6882. Edinburgh: University of Edinburgh Press.Google Scholar
Thom, René. — [1974] 1983. Mathematical Models of Morphogenesis. Translated by Brookes, W. M. and Rand, D.. Chichester: Ellis Horwood.Google Scholar
Ullmo, Jean. 1969. La Pensée scientifique moderne. Paris: Flammarion.Google Scholar
Vogel, Theodore, ed. 1965. Les Vibrations forcées dans les systèmes non-linéaires, Colloque international du CNRS, no. 148, Marseilles, 712 September 1964. Paris: Editions du CNRS.Google Scholar
Weil, André. [1948] 1971. “The Future of Mathematics.” In Le Lionnais [1948] 1971, 321–36.Google Scholar
Weil, André. 1949. “Sur l'étude algébrique de certains types de lois de mariage (Système Murngin).” In Lévi-Strauss 1949, 278–85.Google Scholar
Weil, Andre. — [1991] 1992. Apprenticeship of a Mathematician. Translated by Gage, Jennifer. Basel: Birkhäuser.Google Scholar
Weintraub, E. Roy, and Philip, Mirowski. 1994. “The Pure and the Applied: Bourbakism Conies to Mathematical Economics.” Science in Context 7:245–72.Google Scholar
White, Harrison Colyar. 1963. An Anatomy of Kinship: Mathematical Models for Structures of Cumulated Roles. Englewoods Cliffs, N.J.: Prentice-Hall.Google Scholar
Norton, Wise M.. 1989–90. “Work and Waste: Political Economy and Natural Philosophy in Nineteenth-Century Britain (1–3).” History of Science 27: 263301, 391449; 28:221–61.Google Scholar
Wise, M. Norton, — ed. In preparation. Growing Explanations: Historical Perspective on the Sciences of Complexity.Google Scholar
Woodcock, Alexander, and Davis, Monte. 1978. Catastrophe Theory. New York: E. P. Dutton.Google Scholar
Wussing, Hans. [1969] 1984. The Genesis of the Abstract Group Concept: A Contribution to the History of the Abstract Group Concept. Translated by Shenitzer, Abe. Cambridge, Mass.: MIT Press.Google Scholar
Zisman, Michel. 1956. “Mathématiques et axiomatique, qu'apporte de nouveau Bourbaki?La Pensée: Revue du rationalisme moderne n.s. 65:4654.Google Scholar