Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T10:53:55.564Z Has data issue: false hasContentIssue false

Situating the Debate on “Geometrical Algebra” within the Framework of Premodern Algebra

Published online by Cambridge University Press:  12 May 2016

Michalis Sialaros
Affiliation:
Humboldt-Universität zu Berlin, Berlin, Germany E-mail: [email protected]
Jean Christianidis
Affiliation:
National and Kapodistrian University of Athens and Centre Alexandre Koyré, Paris E-mail: [email protected]

Argument

The aim of this paper is to employ the newly contextualized historiographical category of “premodern algebra” in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on “geometrical algebra.” Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called “semi-algebraic” alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing “premodern algebra,” and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Muhaqqiq, Mahdi. 2001. “The Classification of the Sciences.” In Science and Technology in Islam: The Exact and Natural Sciences, edited by al-Hassan, Ahmad Y., 111131. Paris: UNESCO Publishing.Google Scholar
Artmann, Benno. 1991. “Euclid's Elements and Its Prehistory.” In ΠΕΡΙ ΤΩΝ ΜΑΘΗΜΑΤΩΝ (Peri tōn Mathēmatōn), Apeiron XXIV (4), edited by Mueller, Ian, 147. Edmonton: Academic Press.Google Scholar
Bakar, Osman 1998. Classification of Knowledge in Islam: A Study in Islamic Philosophies of Science. Cambridge: Islamic Texts Society.Google Scholar
Berggren, Len J. 1984. “History of Greek Mathematics: A Survey of Recent Research.” Historia Mathematica 11:394410.CrossRefGoogle Scholar
Bernard, Alain. 2003. “Ancient Rhetoric and Greek Mathematics: A Response to a Modern Historiographical Dilemma.” Science in Context 16:391412.CrossRefGoogle Scholar
Besthorn, Rasmus O., and Heiberg, Johan L.. 1893–1932. Codex Leidensis 399.1, Euclidis Elementa ex interpretatione Al-Hadschdschadschii cum Commentariis Al-Narizii. Copenhagen: Hauniae.Google Scholar
Blåsjö, Viktor. 2014. “A Critique of the Modern Consensus in the Historiography of Mathematics.” Journal of Humanistic Mathematics 4:113123.CrossRefGoogle Scholar
Christianidis, Jean, and Oaks, Jeffrey A.. 2013. “Practicing Algebra in Late Antiquity: The Problem-Solving of Diophantus of Alexandria.” Historia Mathematica 40:127163.CrossRefGoogle Scholar
Christianidis, Jean, and Skoura, Ioanna. 2013. “Solving Problems by Algebra in Late Antiquity: New Evidence from an Unpublished Fragment of Theon's Commentary on the Almagest.” Sciamvs 14:4157.Google Scholar
Corry, Leo. 2013. “Geometry and Arithmetic in the Medieval Traditions of Euclid's Elements: A View from Book II.” Archive for History of Exact Sciences 67:637705.CrossRefGoogle Scholar
Crowe, Michael J. 1992. “Afterword: A Revolution in the Historiography of Mathematics?” In Revolutions in Mathematics, edited by Gillies, Donald, 306316. Oxford: Clarendon Press.CrossRefGoogle Scholar
Dijksterhuis, Eduard J. 1938. Archimedes. Groningen: Noordhoff.Google Scholar
Freudenthal, Hans. 1977. “What Is Algebra and What Has It Been in History.” Archive for the History of Exact Sciences 16:189200.CrossRefGoogle Scholar
Fried, Michael N. 2014The Discipline of History and the ‘Modern Consensus in the Historiography of Mathematics’.” Journal of Humanistic Mathematics 4:124136.CrossRefGoogle Scholar
Fried, Michael N., and Unguru, Sabetai. 2001. Apollonius of Perga's Conica: Text, Context, Subtext. Leiden: Brill.CrossRefGoogle Scholar
Friedlein, Gottfried, ed. 1873. Proclus: Commentarii in Primum Euclidis Elementorum Librum. Leipzig: Teubner.Google Scholar
Fowler, David H. 1980. “Book II of Euclid's Elements and a Pre-Eudoxean Theory of Ratio.” Archive for History of Exact Sciences 22:536.CrossRefGoogle Scholar
Fowler, David H. 1982. “Book II of Euclid's Elements and a pre-Eudoxean Theory of Ratio. Part 2: Sides and Diameters.” Archive for History of Exact Sciences 26:193209.CrossRefGoogle Scholar
Fowler, David H. 1994. “Could the Greeks Have Used Mathematical Induction? Did They Use It?Physis 31:252265.Google Scholar
Grattan-Guinness, Ivor. 1996. “Numbers, Magnitudes, Ratios, and Proportions in Euclid's Elements: How Did He Handle Them?” Historia Mathematica 23:355375.CrossRefGoogle Scholar
Heath, Thomas L. [1908]1956. The Thirteen Books of Euclid's Elements. New York: Dover.Google Scholar
Heath, Thomas L. 1921. A History of Greek Mathematics. Oxford: Clarendon Press.Google Scholar
Heiberg, Johan L., and Menge, Heinrich, eds. 1883–1916. Euclidis Opera Omnia. Leipzig: Teubner.Google Scholar
Heiberg, Johan L., and Stamatis, Evangelos S., eds. 1969–1977. Euclidis Elementa. Leipzig: Teubner.Google Scholar
Hultsch, Friedrich O., ed. 1876–8. Pappi Alexandrini Collectionis quae supersunt. Berlin: Weidmann.Google Scholar
Klein, Jacob. 1968. Greek Mathematical Thought and the Origin of Algebra. Translated by Eva Brann. Cambridge, Mass.: The M.I.T. Press. First published in German as “Die griechische Logistik und die Entstehung der Algebra” in Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abt. B: Studien, vol. 3, fasc. 1 (1934), 18–105 (Part I); fasc. 2 (1936), 122–235 (Part II).Google Scholar
Lo Bello, Anthony, ed. 2003. The Commentary of al-Nayrizi on Book I of Euclid's Elements of Geometry. Boston: Brill.CrossRefGoogle Scholar
Lo Bello, Anthony, ed. 2009. The Commentary of al-Nayrizi on Books II-IV of Euclid's Elements of Geometry. Boston: Brill.CrossRefGoogle Scholar
Mahoney, Michael S. 1970. “Babylonian Algebra: Form vs. Content.” Studies in History and Philosophy of Science 1:369380.Google Scholar
Mahoney, Michael S. 1971–2. “Die Anfänge der algebraischen Denkweise im 17. Jahrhundert.RETE 1:1531.Google Scholar
Μegremi, Athanasia, and Christianidis, Jean. 2015. “Theory of Ratios in Nicomachus’ Arithmetica and Series of Arithmetical Problems in Pachymeres’ Quadrivium: Reflections about a Possible Relationship.” In “Les séries de problèmes, un genre au carrefour des cultures,” edited by Alain Bernard. SHS Web of Conferences 22. – Open access conference proceedings in Human and Social Sciences. Les Ulis: EDP Sciences.CrossRefGoogle Scholar
Mueller, Ian. 1981. Philosophy of Mathematics and Deductive Structure in Euclid's Elements. Cambridge: MIT Press.Google Scholar
Neugebauer, Otto E. 1957. The Exact Sciences in Antiquity, second edition. Providence: Brown University Press.Google Scholar
Oaks, Jeffrey A. 2007. “Medieval Arabic Algebra as an Artificial Language.” Journal of Indian Philosophy 35:543575.CrossRefGoogle Scholar
Oaks, Jeffrey A. 2009. “Polynomials and Equations in Arabic Algebra.” Archive for History of Exact Sciences 63:169203.CrossRefGoogle Scholar
Oaks, Jeffrey A. 2010a. “Equations and Equating in Arabic Mathematics.” Archives Internationales d'Histoire des Sciences 60:265298.CrossRefGoogle Scholar
Oaks, Jeffrey A. 2010b. “Polynomials and Equations in Medieval Italian Algebra.” Bollettino di Storia delle Scienze Matematiche 30:2360.Google Scholar
Oaks, Jeffrey A. 2014. “The Series of Problems in al-Khwārizmī’s Algebra.” Neusis 22:149167. Translated into Greek by Jean Christianidis.Google Scholar
Oaks, Jeffrey A. 2015. “Series of problems in Arabic Algebra: The Example of ʿAlī al-Sulamī.” In “Les séries de problèmes, un genre au carrefour des cultures,” edited by Alain Bernard. SHS Web of Conferences 22. – Open access conference proceedings in Human and Social Sciences. Les Ulis: EDP Sciences.CrossRefGoogle Scholar
Oaks, Jeffrey A., and Alkhateeb, Haitham M.. 2005. “Māl, Enunciations, and the Prehistory of Arabic Algebra.” Historia Mathematica 32:400425.CrossRefGoogle Scholar
Oaks, Jeffrey A., and Alkhateeb, Haitham M.. 2007. “Simplifying Equations in Arabic Algebra.” Historia Mathematica 34:4561.CrossRefGoogle Scholar
Rashed, Roshdi. 2009. Al-Khwārizmī: The Beginnings of Algebra. London: Saqi Books.Google Scholar
Rider, Robin E. 1982. A Bibliography of Early Modern Algebra, 1500–1800. Berkeley: The Regents of the University of California. (Berkeley Papers in History of Science VII.)Google Scholar
Rosen, Frederic. 1831. The Algebra of Mohammed Ben Musa. London: J. L. Cox.Google Scholar
Saito, Ken. [1985]2004. “Book II of Euclid's Elements in the Light of the Theory of Conic Sections.” In Classics in the History of Greek Mathematics, edited by Jean Christianidis, 139–168. Boston: Kluwer. Originally published in Historia Scientiarum 28:3160.Google Scholar
Saito, Ken. 1986. “Compounded Ratio in Euclid and Apollonius.” Historia Scientiarum 30:2559.Google Scholar
Saito, Ken, and Sidoli, Nathan. 2012. “Diagrams and Arguments in Ancient Greek Mathematics: Lessons Drawn from Comparisons of the Manuscript Diagrams with those in Modern Critical Editions.” In the History of Mathematical Proof in Ancient Traditions, edited by Chemla, Karine, 135162. Cambridge: Cambridge University Press.Google Scholar
Szabó, Árpad. 1978. The Beginnings of Greek Mathematics. Translated by A. M. Ungar. Dordrecht/Boston: Reidel. Originally published in German as Anfänge der griechischen Mathematik. Budapest: Akadémiai Kiadó, 1969.CrossRefGoogle Scholar
Tannery, Jules. 1903. Notions de mathématiques, suivies de notices historiques par Paul Tannery. Paris: Delagrave.Google Scholar
Tannery, Paul, ed. 1893–5. Diophanti Alexandrini Opera Omnia, 2 vols. Leipzig: Teubner.Google Scholar
Tannery, Paul. 1912. “De la solution géométrique des problèmes du second degré avant Euclide.” In Mémoires Scientifiques I: Sciences Exactes dans l'antiquité, edited by Heiberg, Johan L. and Zeuthen, Hieronymus G., 254280. Toulouse: Édouard Privat & Paris: Gauthier-Villars.Google Scholar
Unguru, Sabetai. 1975. “On the Need to Rewrite the History of Greek Mathematics.” Archive for History of Exact Sciences 15:67114.CrossRefGoogle Scholar
Unguru, Sabetai. 1979. “History of Ancient Mathematics: Some Reflections on the State of the Art.” Isis 70:555565.CrossRefGoogle Scholar
Unguru, Sabetai. 1991. “Greek Mathematics and Mathematical Induction.” Physis 28:273289.Google Scholar
Unguru, Sabetai. 1994. “Fowling after Induction.” Physis 31:267272.Google Scholar
Unguru, Sabetai, and Rowe, David E.. 1981. “Does the Quadratic Equation Have Greek Roots? A Study of ‘Geometric Algebra,’ ‘Application of Areas,’ and Related Problems (Part I).” Libertas Mathematica (ARA) 1:149.Google Scholar
Unguru, Sabetai, and Rowe, David E.. 1982. “Does the Quadratic Equation Have Greek Roots? A Study of ‘Geometric Algebra,’ ‘Application of Areas,” and Related Problems (Part II).” Libertas Mathematica (ARA) 2:162.Google Scholar
Van der Waerden, Bartel L. 1930–1. Moderne Algebra. Berlin: Verlag von Julius Springer.CrossRefGoogle Scholar
Van der Waerden, Bartel L. 1961. Science Awakening. Translated by Arnold Dresden. New York: Oxford University Press. Originally published in Dutch as Ontwakende Wetenschap: Egyptische, Babylonische en Griekse Wiskunde. Groningen: P. Noordhoff, 1950.Google Scholar
Van der Waerden, Bartel L. 1975. “Defence of a Shocking Point of View.” Archive for History of Exact Sciences 15:199210.CrossRefGoogle Scholar
Vitrac, Bernard. 1990–2001. Euclid: Les Éléments, 4 vols. Paris: Presses Universitaires de France.Google Scholar
Vitrac, Bernard. 2012. “The Euclidean Ideal of Proof in the Elements and Philological Uncertainties of Heiberg's Edition of the Text.” In The History of Mathematical Proof in Ancient Traditions, edited by Chemla, Karine, 69134. Cambridge: Cambridge University Press.Google Scholar
Weil, André. 1978. “Who Betrayed Euclid?Archive for History of Exact Sciences 19:9193.CrossRefGoogle Scholar
Zeuthen, Hieronymus G. 1886. Die Lehre von den Kegelschnitten im Altertum. Copenhagen: Höst & Sohn.Google Scholar
Zeuthen, Hieronymus G. 1902. Histoire des mathématiques dans l'antiquité et le moyen âge. Translated by Jean Mascart. Paris: Gauthier-Villars. Originally published in Danish as Forelaesning over Mathematikens Histoire: Oldtig i Middlalder. Copenhagen: Verlag A. F. Hoest, 1893.Google Scholar