Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T10:35:05.195Z Has data issue: false hasContentIssue false

Physiological Optics and Physical Geometry

Published online by Cambridge University Press:  18 December 2002

Abstract

Argument

Hermann von Helmholtz’s distinction between “pure intuitive” and “physical” geometry must be counted as the most influential of his many contributions to the philosophy of science. In a series of papers from the 1860s and 70s, Helmholtz argued against Kant’s claim that our knowledge of Euclidean geometry was an a priori condition for empirical knowledge. He claimed that geometrical propositions could be meaningful only if they were taken to concern the behaviors of physical bodies used in measurement, from which it followed that it was posterior to our acquaintance with this behavior. This paper argues that Helmholtz’s understanding of geometry was fundamentally shaped by his work in sense-physiology, above all on the continuum of colors. For in the course of that research, Helmholtz was forced to realize that the color-space had no inherent metrical structure. The latter was a product of axiomatic definitions of color-addition and the empirical results of such additions. Helmholtz’s development of these views is explained with detailed reference to the competing work of the mathematician Hermann Grassmann and that of the young James Clerk Maxwell. It is this separation between 1) essential properties of a continuum, 2) supplementary axioms concerning distance-measurement, and 3) the behaviors of the physical apparatus used to realize the axioms, which is definitive of Helmholtz’s arguments concerning geometry.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)