Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:21:45.920Z Has data issue: false hasContentIssue false

Otto Toeplitz's 1927 Paper on the Genetic Method in the Teaching of Mathematics

Published online by Cambridge University Press:  21 May 2015

Michael N. Fried
Affiliation:
Ben Gurion University of the Negev, Beer Sheva, Israel E-mail: [email protected]
Hans Niels Jahnke
Affiliation:
Universität Duisburg-Essen, Essen, Germany E-mail: [email protected]

Argument

“The problem of university courses on infinitesimal calculus and their demarcation from infinitesimal calculus in high schools” (1927) is the published version of an address Otto Toeplitz delivered at a meeting of the German Mathematical Society held in Düsseldorf in 1926. It contains the most detailed exposition of Toeplitz's ideas about mathematics education, particularly his thinking about the role of the history of mathematics in mathematics education, which he called the “genetic method” to teaching mathematics. The tensions and assumptions about mathematics, history of mathematics, and historiography revealed in this piece dedicated to educational ideas are what make Toeplitz's text interesting in the study of historiography of mathematics. In general, the ways historiography of mathematics and teaching of mathematics, even without an immediate concern for history, are deeply entangled and, in our view, worth attention both in historical and educational research.

Type
Historical Document in Translation
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behnke, Heinrich. 1963. “Der Mensch und der Lehrer.” Jahresbericht der Deutschen Mathematiker-Vereinigung 66:116Google Scholar
Biermann, Heike Renate, and Jahnke, Hans Niels. 2013. “How Eighteenth-Century Mathematics Was Transformed into Nineteenth-Century School Curricula.” In Transformation – A Fundamental Idea of Mathematics Education, edited by Rezat, Sebastian, Hattermann, Mathias and Peter-Koop, Andrea, 123. Berlin: Springer.Google Scholar
Born, Max. 1940. “Professor Otto Toeplitz.” Nature 145 (3677):617.CrossRefGoogle Scholar
Cajori, Florian. 1896. A History of Elementary Mathematics with Hints on Methods of Teaching. New York: Macmillan.Google Scholar
Corry, Leo. 1997. “David Hilbert and the Axomatization of Physics (1994–1905).” Archive for History of Exact Sciences 51:83198.CrossRefGoogle Scholar
Ewald, William 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Vol. 2. New York: Oxford University Press.Google Scholar
Ferreirós, José. 2007. Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics, 2nd revised ed. Basel: Birkhäuser.Google Scholar
Froebel, Friedrich. 2005. The Education of Man. Translated by Hailmann, William N.. Mineola NY: Dover PublicationsGoogle Scholar
Fried, Michael N. 2001. “Can Mathematics Education and History of Mathematics Coexist?Science & Education 10:391408.CrossRefGoogle Scholar
Fried, Michael N. 2013. “The Varieties of Relationships to Mathematics of the Past.” Talk given at the annual meeting of American Section of the HPM (History and Pedagogy of Mathematics), West Point, March, 2013. Available at http://www.hpm-americas.org/meetings/2013-east-coast/, last accessed July 5, 2014.Google Scholar
Gould, Stephen J. 1977. Ontogeny and Phylogeny. Cambridge: Harvard University Press.Google Scholar
Hartmann, Uta. 2009. Heinrich Behnke (1898–1979). Zwischen Mathematik und deren Didaktik. Franfurt/M et al.: Peter Lang.Google Scholar
Jahnke, Hans Niels. 1994. “The Historical Dimension of Mathematical Understanding: Objectifying the Subjective.” In Proceedings of the Eighteenth International Conference for the Psychology of Mathematics Education, edited by da Ponte, Joao Pedro and Matos, Joao Filipe, vol. I, 139156. Lisbon: University of Lisbon.Google Scholar
Klein, Felix. [1908] 1939. Elementary Mathematics from an Advanced Standpoint. Part I: Arithmetic, Algebra, Analysis. Part II: Geometry. Translated by Hedrick, E. R. and Noble, C. A.. New York: Dover Publications.Google Scholar
Klein, Jacob. 1968. Greek Mathematical Thought and the Origin of Algebra. Translated by Eva Brann. Originally published in 1934 and 1936 as Die griechische Logistik und die Entstehung der Algebra. In Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik (Abteilung B: Studien), 3(1):18–105 and 3(2):122–235). Cambridge: MIT Press.Google Scholar
Kowalewski, Gerhard. 1910. Die klassischen Probleme der Analysis des Unendlichen: ein Lehr- und Übungsbuch für Studierende zur Einführung in die Infinitesimalrechnung. Leipzig: Engelmann.Google Scholar
Mayr, Ernst Walter. 1994. “Recapitulation Reinterpreted: The Somatic Program.” Quarterly Review of Biology 69 (2):223232.CrossRefGoogle Scholar
Pringsheim, Alfred. 1897. “Über den Zahl- und Grenzbegriff im Unterricht.” Jahresbericht der Deutschen Mathematiker-Vereinigung 6:7383.Google Scholar
Purkert, Walter. 2012. “Bonn.” In Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture, edited by Bergmann, Birgit, Epple, Moritz, and Ungar, Ruti, 88112. Berlin: Springer.CrossRefGoogle Scholar
Robinson, Abraham. 1970. “Toeplitz, Otto.” In Dictionary of Scientific Biography, edited by Gillispie, Charles C., vol. 13, 428. Detroit: Charles Scribner's Sons.Google Scholar
Schubring, Gert. 1978. Das genetische Prinzip in der Mathematik-Didaktik. Stuttgart: Klett.Google Scholar
Schubring, Gert. 2008. Heinrich Behnke. Available at http://www.dm.unito.it/rome2008/portrait/behnke.php, last accessed July 5, 2014.Google Scholar
Toeplitz, Otto. 1927. “Das Problem der Universitätsvorlesungen über Infinitesimalrechnung und ihrer Abgrenzung gegenüber der Infinitesimalrechnung an den höheren Schulen.” Jahresbericht der Deutschen Mathematiker-Vereinigung 36:88100.Google Scholar
Toeplitz, Otto. 1949. Die Entwicklung der Infinitesimalrechnung: Eine Einleitung in die Infinitesimalrechnung nach der genetischenMethode, edited by Köthe, Gottfried, vol.1. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Toeplitz, Otto. 1963. The Calculus: The Genetic Approach. Chicago: University of Chicago Press.Google Scholar