Article contents
Mathematicians and the Nation in the Second Half of the Nineteenth Century as Reflected in the Luigi Cremona Correspondence
Published online by Cambridge University Press: 03 February 2011
Argument
Up until the French Revolution, European mathematics was an “aristocratic” activity, the intellectual pastime of a small circle of men who were convinced they were collaborating on a universal undertaking free of all space-time constraints, as they believed they were ideally in dialogue with the Greek founders and with mathematicians of all languages and eras. The nineteenth century saw its transformation into a “democratic” but also “patriotic” activity: the dominant tendency, as shown by recent research to analyze this transformation, seems to be the national one, albeit accompanied by numerous analogies from the point of view of the processes of national evolution, possibly staggered in time. Nevertheless, the very homogeneity of the individual national processes leads us to view mathematics in the context of the national-universal tension that the spread of liberal democracy was subjected to over the past two centuries. In order to analyze national-universal tension in mathematics, viewed as an intellectual undertaking and a profession of the new bourgeois society, it is necessary to investigate whether the network of international communication survived the political, social, and cultural upheavals of the French Revolution and the European wars waged in the early nineteenth century, whether national passions have transformed this network, and if so, in what way. Luigi Cremona's international correspondence indicates that relationships among individuals have been restructured by the force of national membership, but that the universal nature of mathematics has actually been boosted by a vision shared by mathematicians from all countries concerning the role of their discipline in democratic and liberal society as the basis of scientific culture and technological innovation, as well as a basic component of public education.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2011
References
- 4
- Cited by