Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T13:22:41.806Z Has data issue: false hasContentIssue false

The Formation of “Islamic Mathematics” Sources and Conditions

Published online by Cambridge University Press:  26 September 2008

Jens Høyrup
Affiliation:
Institute of Educational Research, Media Studies and Theory of ScienceRoskilde University Centre

Abstract

The development of autonomous theoretical science is often considered a “Greek miracle.” It is argued in the present paper that another “miracle,” necessary for the creation of modern science, took place for the first time in the Islamic Middle Ages, viz. the integration of (still autonomous) theory and (equally autonomous) practice.

The discussion focuses on the mathematical disciplines. It starts by investigating the plurality of traditions which were integrated into Islamic mathematics during its formation, emphasizing practitioners' “sub-scientific” traditions, and shows how these were synthesized in a way virtually unknown in earlier cultures. A discussion of the sociocultural roots of this specific synthesis concludes that a major role was played in the earlier period by the combination of fundamentalist convictions characteristic of Islam – that the most humble daily activity is directly responsible to the highest ontological level, while conversely this highest level is concerned with the humblest ranks of daily existence – with the absence of an institutionalized “Church” able to monopolize the interpretation of the mutual bond of the divine and the everyday levels.

As the institutions of learning crystallized around the turn of the millennium, the integrative attitude to theory and practice was fixated institutionally; the latter process is discussed, first with the example of the madrasah institution as the carrier of an arithmetical textbook tradition, and second with that of the bond between astronomy and theoretical geometry.

Type
Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bio-Bibliographical Cues

Based mainly upon DSB; GAS; GAL; Suter 1900; Sarton 1927; Sarton 1931; and Dodge 1970. All dates A.D.

dynasty, ˓Abbasid, Dynasty of caliphs in effective power in Baghdad from 749/50 to the later tenth-earlier eleventh century, formally until 1258.Google Scholar
Abī, Uşaybi˓a.. 1203/4–1270. Syrian lexicographer and physician.Google Scholar
Bakr, Abū. Early ninth century? Otherwise unknown author of the Liber mensurationum.Google Scholar
Kamil, Abū. Fl. late ninth and/or early tenth century. Egyptian mathematician.Google Scholar
Ma˓shār, Abū. 787886. Eastern Caliphate. Astrologer.Google Scholar
Abū'l-Wafā˓, 940–997/8. Eastern Caliphate. Mathematician and astronomer.Google Scholar
Al-Bīrūnī, B. 973, d. after 1050. Astronomer, mathematician, historian, and geographer from Khwārezm.Google Scholar
Al-Farabl, Ca. 870950. Eastern Caliphate. Philosopher.Google Scholar
Al-Fāzārī, Fl. second half of the eighth century. Eastern Caliphate. Astronomer.Google Scholar
Al-Ghazzālī, 10581111. Eastern Caliphate. Theologian.Google Scholar
Al-Hajjāj, Fl. late eighth to early ninth centuries. Eastern Caliphate. Translator of the Elements and of the Almagest.Google Scholar
Al-Haşşār, Fl. twelfth or thirteenth century, probably in Morocco. Mathematician.Google Scholar
Al-Jāhiz, Ca. 776868/9. Iraq. Muctazilite theologian; zoologist.Google Scholar
Al-Jawharī, Fl. ca. 830. Eastern Caliphate. Mathematician and astronomer.Google Scholar
AI-Karajī, Fl. ca. 1000. Eastern Caliphate. Mathematician.Google Scholar
Al-Khayyāmī, . 1048(?)–1131(?). Iran. Mathematician, astronomer, philosopher.Google Scholar
Al-Khazin, D.. 961/71. Iran. Mathematician and astronomer.Google Scholar
AI-Khazīnī, Fl. ca. 11151130. Iran. Astronomer, theoretician of mechanics and instruments.Google Scholar
Al-Khuwārizmī, Fl. ca. 980. Khwarezm. Lexicographer.Google Scholar
Al-Khwārizmī, Late eighth to mid-ninth centuries. Eastern Caliphate. Mathematician, astronomer, geographer.Google Scholar
Al-Kindī, Ca. 801 to ca. 866. Eastern Caliphate. Philosopher, mathematician, astronomer, physician, etc.Google Scholar
Al-Māhanī, Fl. ca. 860 to ca. 880. Eastern Caliphate. Mathematician, astronomer.Google Scholar
Al-Ma˓mūn, 786833. ˓Abbasid caliph 803–833, ardent mu˓tazilite, patron of awdā˒il learning.Google Scholar
Al-Nadīm, Ca. 935990. Baghdad. Librarian, lexicographer.Google Scholar
Al-Nasawī, Fl. 10291044. Khurasan, Eastern Caliphate. Mathematician.Google Scholar
Al-Nayrīzī, Fl. early tenth century. Eastern Caliphate. Mathematician, astronomer.Google Scholar
Al-Qalaşādī, 14121486. Spain, Tunisia. Mathematician, jurisprudent.Google Scholar
Al-Samaw˒al, Fl. mid-twelfth century. Iraq, Iran. Mathematician, physician.Google Scholar
Al-Umawī, Fl. fourteenth century. Spain, Damascus. Mathematician.Google Scholar
Al-Uqlīdīsī, Fl. 952/3. Damascus. Mathematician.Google Scholar
Al-Ya˓qūbī, Fl. 873891. Eastern Caliphate. Shi'ite historian and geographer.Google Scholar
Anania of Shirak, Fl. first half of the seventh century. Armenia. Mathematician, astronomer, geographer, etc.Google Scholar
Mūsā, Banū (“Sons of Musa”). Three brothers, ca. 800 to ca. 875. Baghdad. Mathematicians, translators, organizers of translation.Google Scholar
Hiyya, Bar (Savasorda) Abraham. Fl. before 1136. Hispano-Jewish philosopher, mathematician, and astronomer. FJunayn ibn Ishaq. 808873. Eastern Caliphate. Physician, translator.Google Scholar
al-Bannsā˓., Ibn 12561321. Morocco. Mathematician, astronomer.Google Scholar
al-Haytham, Ibn 965 to ca. 1040. Iraq, Egypt. Mathematician, astronomer.Google Scholar
Khaldūn, Ibn. 13321406. Maghreb, Spain, Egypt. Historian, sociologist.Google Scholar
Qunfudh, Ibn. D. 1407/8. Algeria. Jurisprudent, historian. Commentator to ibn al-Bannā˒.Google Scholar
Tāhir, Ibn. D. 1037. Iraq, Iran. Theologian, mathematician, etc.Google Scholar
Turk, Ibn. Early ninth century. Turkestan. Mathematician.Google Scholar
al-safā˓, Ikhwān (“Epistles of the Brethren of Purity”). Tenth-century Ismā˓īlī encyclopaedic exposition of philosophy and sciences.Google Scholar
al-Dīn, Kamāl. D. 1320. Iran. Mathematician, mainly interested in optics.Google Scholar
ibn Labbān, Kushyār. Fl. ca. 1000. Eastern Caliphate. Astronomer, mathematician.Google Scholar
allah, Māshā˓ Fl. 762 to ca. 815. Iraq. Astrologer.Google Scholar
al-Maghribi., Muhyi'l-Dīn Fl. ca. 1260 to 1265. Syria and Iran. Mathematician, astronomer, astrologer.Google Scholar
al-Dīn al-Tūsī, Naşīr. D. ca. 1214. Iran. Astronomer, mathematician.Google Scholar
ibn Abī'l-Qāsim, Qayşar. 11781251. Egypt, Syria. Jurisprudent, mathematician, technologist.Google Scholar
ibn Lūqā, Qusţā. Fl. 860 to 900. Eastern Caliphate. Physician, philosopher, translator.Google Scholar
ibn Yahya, Rabī˓ Fl. tenth century? Bishop at Elvira.Google Scholar
Sebokht, Severus Fl. mid-seventh century. Syrian bishop. Astronomer, commentator on philosophy.Google Scholar
Thābit ibn Qurra 836901. Eastern Caliphate. Mathematician, astronomer, physician, translator, etc.Google Scholar
ibn al-Farrukhān, ˓Umar. 762812. Eastern Caliphate. Astronomer, astrologer.Google Scholar
˓Umayyad dynasty. Dynasty of caliphs, 661750.Google Scholar
al-Qass, Yūhannā Fl. first half of tenth century? Mathematician, translator of mathematics.Google Scholar

Bibliography and Abbreviations

The following abbreviations are used throughout the text and bibliography:

DSB: Dictionary of Scientific Biography: Editor in Chief: Gillispie, Charles Coulston, vols. I–XVI. New York: Charles Scribner's Sons, 19701980.Google Scholar
GAL: Brockelmann, Carl Geschichte der Arabischen Literatur. Band 1–2, Supplement band 1–3. Berlin: Emil Fischer, 1898, 1902; Leiden:Brill, 1937, 1938, 1942.Google Scholar
GAS: Sezgin, Fuat, Geschichte des arabischen Schrifttums. Vols. I–IX. Leiden: Brill, 19671984.Google Scholar
PL: Patrologiaecursus completus, serieslatina, accurante Migne, J. P. 221 vols., Paris 18441864.Google Scholar
Ahrens, W., 1916. “Studien über die “magischen Quadrate” der Araber,” Islam 7: 186250.CrossRefGoogle Scholar
Amir-Móez, Ali R., 1959. “Discussion of Difficulties in Euclid, by Omar Ibn Abrahim al-Khayyāmī (Omar Khayyam), translated”, Scripta Mathematica, 24: 275303.Google Scholar
Anawati, G. C. Iskandar, A. Z.Hunayn ibn Ishāq, ” DSB, vol. XV, pp. 230–49.Google Scholar
Anbouba, Adel, 1978. “Acquisition de l'algèbre par les Arabes et premiers dèveloppements. Aperçu général,”Journal for the History of Arabic Science 2: 66100.Google Scholar
Anbouba, Adel, 1979. “Un traité d' Abū Ja˓far sur les triangles rectangles numériques,” Journal for the History of Arabic Science 3: 134–56 (Arabic: pp. 178–57).Google Scholar
Anbouba, Adel, “Al-Samaw˓al,” DSB, vol. XII, pp. 9195.Google Scholar
Anthologia graeca, see The Greek AnthologyGoogle Scholar
Guy, Beaujouan, 1957. L'intérdependance entre la science scolastique et les sciences utilitaires, les Conférences du Palais de la Découverte, série D no. 46, Paris: Université de Paris.Google Scholar
Bergsträsser, G., 1923. “Zu den magischen Quadraten,” Islam 13: 227–35.CrossRefGoogle Scholar
Besthorn, R. O., Heiberg, J. L., ed., 1893. Codex Leidensis 399, 1. Euclidis Elementa ex interpretatione al-Hadschdschadschii cum commentariis al-Narizii. Arabice et latine ediderunt notisque instruxerunt Besthorn et, R. O., Heiberg, J. L., Vols. I–III (1893–1932), Copenhagen: Gyldendalske Boghandel.Google Scholar
Baldassare, Boncompagni, ed., 1857. Scritti di Leonardo Pisano matematico del secolo decimoterzo. I. II “Liber abaci” di Leonardo Pisano, Roma: Tipografia delle Scienze Matematiche e Fisiche.Google Scholar
Peter, Brown, 1971. The World of Late Antiquity, London: Thames and Hudson.Google Scholar
Bulliet, Richard W., 1979. Conversion to Islam in the Medieval Period: An Essay in Quantitative History, Cambridge, Mass. and London: Harvard University Press.CrossRefGoogle Scholar
Busard, H. L. L., 1968. “L'algèbre au moyen âge: Le Liber mensurationum d' Abû Bekr, ” Journal des Savants, avril-juin 1968, 65125.CrossRefGoogle Scholar
Cammann, Schuyler, 1969. “Islamic and Indian Magic Squares,” History of Religions 8: 181209, 271–99.CrossRefGoogle Scholar
Moritz, Cantor, 1875. Die römischen Agrimensoren und ihre Stellung in der Geschichte der Feldmesskunst. Eine historisch-mathematische Untersuchung, Leipzig: Teubner.Google Scholar
Cornelius, Castoriadis, 1986. Domaines de l'homme (Les carrefours du labyrinthe. II), Paris: Seuil.Google Scholar
Arnold Buffum, Chace, Bull, Ludlow, Parker Manning, Henry, 1929. The Rhind Mathematical Papyrus. II. Photographs, Transcription, Transliteration, Literal Translation. Oberlin, Ohio: Mathematical Association of America.Google Scholar
Chenu, Marie-Dominique, O. P., 1974. “Civilisation urbaine et théologie. L'école de Saint-Victor au XII siècle”, Annales. Economies, sociétés, civilisations 29. 1253–63.CrossRefGoogle Scholar
Cohen, H. J., 1970. “The Economic Background and the Secular Occupations of Muslim Jurisprudents and Traditionists in the Classical Period of Islam (until the Middle of the Eleventh Century),” Journal of the Economic and Social History of the Orient 13: 1659.Google Scholar
Colebrooke, H. T., ed., trans., 1817. Algebra, with Arithmetic and Mensuration from the Sanscrit of Brahmagupta and Bhascara, London: John Murray. Reprint Wiesbaden 1973: Martin Sändig.Google Scholar
Curtze, Maximilian, ed., 1902. Urkunden zur Geschichte der Mathematik im Mit-telalter und der Renaissance, Abhandlungen zur Geschichte der mathematischen Wissenschaften, vols. 12–13, Leipzig: Teubner.Google Scholar
Datta, Bibhutibhusan, and Singh, Avadhesh Narayan, [19351938], 1962. History of Hindu Mathematics. A Source Book, Parts I and II, Bombay: Asia Publishing House. First ed. Lahore: Motilal Banarsidass.Google Scholar
Djebbar, A., 1981. Enseignement et recherche mathématiques dans le Maghreb des XIIIe-XIVe siécles (étude partielle), Publications mathématiques d'orsay, 81–02, Orsay: Université de Paris-Sud.Google Scholar
Dodge, Bayard, ed., trans., 1970. The “Fihrist” of al-Nadīm. A Tenth-Century Survey of Muslim Culture. 2vols., Records of Civilization. Sources and Studies, no. 43, New York and London: Columbia University Press.Google Scholar
Dupuis, J., ed., trans., 1892. Théon de Smyrne, philosophe platonicien, “Exposition des connaissances mathématiques utiles pour la lecture de Platon.” Traduite pour la première fois du grec en français, Paris: Hachette.(Includes Hiller's critical edition of the Greek text.)Google Scholar
Fakhry, Majid, 1969. “The Liberal Arts in the Medieval Arabic Tradition from the Seventh to the Twelfth Centuries, ” in Arts libéraux et philosophie au Moyen Age. Actes du Quatrième Congrès International de Philosophie Médiévale, 27 août–2 Septembre 1967, Montréal: Institut d'etudes Médiévales; Paris (1969): Vrin, pp. 9197.Google Scholar
Farrington, Benjamin, [19441949], 1969. Greek Science, Harmondsworth, Middlesex: Penguin.Google ScholarPubMed
Folkerts, Menso, 1970. “Boethius” Geometrie II. Ein mathematisches Lehrbuch des Mittelalters Wiesbaden: Franz Steiner.Google Scholar
Folkerts, Menso, 1978. “Die älteste mathematische Aufgabensammlung in lateinischer Sprache: Die Alkuin zugeschriebenen Propositiones ad acuendos iuvenes. Überlieferung, Inhalt, Kritische Edition, ” Österreichische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse. Denkschriften 116, Band 6, Abhandlung (Vienna).Google Scholar
Folkerts, Menso, 1980., “Probleme der Euklidinterpretation und ihre Bedeutung für die Entwicklung der Mathematik,” Centaurus. 23: 185215.Google Scholar
Solomon, Gandz, ed., 1932. “The Mishnat ha-Middot, the First Hebrew Geometry of about 150 C. E., and the Geometry of Muhammad ibn Musa alKhowarizmi, the First Arabic Geometry (c. 820), Representing the Arabic Version of the Mishnat ha-Middot. A New Edition of the Hebrew and Arabic Texts with Introduction, Translation and Notes,” Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung A: Quellen 2.Google Scholar
Bertrand, Gille, 1980. Les mécaniciens grecs. La naissance de la technologie, Paris: Seuil.Google Scholar
Ignácz, Goldziher, 1915. “Die Stellung der alten islamischen Orthodoxie zu den antiken Wissenschaften, ” Abhandlungen der Preujβschen Akademie der Wissenschaften. Philosophisch-historische Klasse 1915 no. 8, 1916, Berlin.Google Scholar
Hahnloser, H. R., ed., 1935. Villard de Honnecourt. Kritische Gesamtausgabe des Bauhüttenbuches ms. fr 19093 der Pariser Nationalbibliothek, Wien: Anton Schroll.Google Scholar
Harvey, E. Ruth. “Qustā ibn Lūqā al-Baclabakkī”, DSB, vol. XI, pp. 244–46.Google Scholar
Heinen, Anton M., 1978. “Mutakallimūn and Mathematicians, ” Islam 55: 5773.CrossRefGoogle Scholar
Hermelink, Heinrich, 1958. “Die ältesten magischen Quadrate höherer Ordnung und ihre Bildung,” Sudhoffs Archiv, 42: 199217.Google Scholar
Heinrich, Hermelink, “Arabic Recreational Mathematics as a Mirror of Age-Old Cultural Relations Between Eastern and Western Civilizations, ” in Proceedings of the First International Symposium for the History of Arabic Science, April 512, 1976, ed. al-Hassan, Ahmad Y., Karmi, Ghada Namrum, Nizar, 1978. vol. II, Papers in European Languages, Aleppo: Aleppo University, Institute for the History of Arabic Science, pp. 4452.Google Scholar
Adolph, Hochheim, ed., trans., 1878. Kâfî fîl Hisáb (Genügendes über Arithmetik) des Abu Bekr Muhammed ben Alhusein Alkarkhî. 3 vols. Halle: Louis Nebert.Google Scholar
Hogendijk, Jan P., 1985. “Thābit ibn Qurra and the Pair of Amicable Numbers 17296, 18416,” Historia Mathematica 12: 269273.CrossRefGoogle Scholar
Hogendijk, Jan P., ed., 1986. Abū Kāmil Shujā˓ ibn Aslam (Second half ninth century A. D.), The Book of Algebra. Kitā al-Jabr wal-muqābala. Publications of the Institute for the History of Arabic-Islamic Science, Series C: Facsimile Editions, vol. 24, Frankfurt, a. M.: Institute for the History of Arabic-Islamic Science.Google Scholar
Høyrup, Jens, 1985. “Varieties of Mathematical Discourse in Pre-Modern SocioCultural Contexts: Mesopotamia, Greece, and the Latin Middle Ages, ” Science and Society 49: 441.Google Scholar
Jens, Høyrup, 1985 a. “Jordanus de Nemore, 13th Century Mathematician: An Essay on Intellectual Context, Achievement, and Failure”, preprint, April 15, 1985, Roskilde University Centre, Institute of Educational Research, Media Studies and Theory of Science. Revised version to appear in Archive for History of Exact Sciences.Google Scholar
Jens, Høyrup, 1985 b. Babylonian Algebra from the View-Point of Geometrical Heuristics. An Investigation of Terminology, Methods, and Patterns of Thought, Second, slightly corrected printing. Roskilde: Roskilde University Centre, Institute of Educational Research, Media Studies and Theory of Science.Google Scholar
Høyrup, Jens, 1986. “Al-Khwârizmî, Ibn Turk, and the Liber Mensurationum: on the Origins of Islamic Algebra,” Erdem (Ankara) 5 (2):445–84.Google Scholar
Jens, Høyrup, 1987. “Algebra and Naive Geometry. An Investigation of Some Basic Aspects of Old Babylonian Mathematical Thought”, Filosofi og Videnskabsteori på Roskilde Universitets center, Third Series: Preprints and Reprints, no. 2.Google Scholar
Barnabas, Hughes, O. F. M., 1986. “Gerard of Cremona's Translation of al-Khwārizmī's Al-Jabr: A Critical Edition”, Mediaeval Studies 48: 211–63.CrossRefGoogle Scholar
Jackson, D. E. P., 1980. “Toward a Resolution of the Problem of τά έvι δια-στήματι γραφόμεvα in Pappus’ Collection Book VIII”, The Classical Quarterly, New Series 30: 523–33.CrossRefGoogle Scholar
Jones, Charles W., ed., 1943. Bedae Opera de temporibus, The Mediaeval Academy of America, Publication no. 41, Cambridge, Mass.: The Mediaeval Academy of America.Google Scholar
Juschkewitsch, A. P., 1964. Geschichte der Mathematik im Mittelalter, Leipzig: Teubner 1st ed. (in Russian), 1961.Google Scholar
Louis Charles, Karpinski, ed., trans., 1915. Robert of Chester's Latin Translation of the Algebra of al-Khowarizmi, University of Michigan Studies, Humanistic Series, vol. 11, New York. Reprinted in Karpinski, L. G., Winter, J. G., 1930. Contributions to the History of Science, Ann Arbor: University of Michigan.Google Scholar
Kasir, Daoud S., ed., trans., 1931. The Algebra of Omar Khayyam, Dissertation, Faculty of Philosophy, Columbia University. New York: Bureau of Publications, Teachers College, Columbia University.Google Scholar
Kennedy, E. S, Pingree, David, 1971. The Astrological History of Mā˒shāallāh, Cambridge, Mass.: Harvard University Press.CrossRefGoogle Scholar
Kirk, G. S., Raven, J. E., Schofield, M., 1983. The Presocratic Philosophers. A Critical History with a Selection of Texts, 2nd ed., Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kokian, P. Sahak, ed., trans., 1919. “Des Anania von Schirak arithmetische Aufgaben”, Zeitschrift für die deutsch-österreichischen Gymnasien 69 (19191920):112–17.Google Scholar
Krasnova, S. A., ed., trans., 1966. “Abu-l-Vafa al-Buždžani, Kniga o tom, čto neobxodimo remeslenniku iz geometričeskix postroenij”, in Fiziko-matematičeskie nauki v stranax vostoka, ed. Grigor'jan, A. T. and Juškevič, A. P. 1966: Sbornik statej i publikacij. Vypusk I (IV), Moskva: Izdatel'stvo “Nauka,” pp. 42140.Google Scholar
Martin, Levey, ed., trans., 1966. The “Algebra” of Abü Kāmil, “ Kitāb fi al-jābr [sic] wa'l-muqābala”, in a Commentary by Mordechai Finzi, Hebrew Text, Translation, and Commentary with Special Reference to the Arabic Text,Madison: University of Wisconsin Press.Google Scholar
Levey, Martin, Petruck, Marvin, ed., trans., 1965. Kūshyār ibn Labbān, “Principles of Hindu Reckoning.” A Translation with Introduction and Notes of the “Kitāb fī usūl hisāb al-hind,“ Madison, Milwaukee: University of Wisconsin Press.Google Scholar
L'Huillier, Ghislaine, 1980. “Regiomontanus et le Quadripartitum numerorum de Jean de Murs, ” Revued'histoire des Sciences et de leurs applications 33: 193214.CrossRefGoogle Scholar
Hervé, L'Huillier, ed., 1979. Nicolas Chuquet, “La géométrie”. Première géométrie algébrique en langue française (1484). Introduction, texte et notes, Paris: Vrin.Google Scholar
Luckey, Paul, 1941. “Thābit b. Qurra über den geometrischen Richtigkeitsnachweis der Auflösung der quadratischen Gleichungen,” Sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse. Berichte 93: 93114.Google Scholar
McGarry, Daniel D., ed., trans., [1955] 1971. The “ Metalogicon” of John of Salisbury.“A Twelfth-Century Defence of the Verbal and Logical Arts of the Trivium, Translated with an Introduction and Notes, Gloucester, Mass.: Peter Smith.Google Scholar
Makdisi, George, 1961. “Muslim Institutions of Higher Learning in Eleventh-Century Baghdad,” Bulletin of the School of Oriental and African Studies (London) 24: 156.Google Scholar
George, Makdisi, 1971. “Law and Traditionalism in the Institutions of Learning in Medieval Islam,” in Theology and Law in Islam, ed. von Grünebaum, G. E., Wiesbaden: Harrasowitz, pp. 7588.Google Scholar
Marquet, Yves. “Ikhwān al-Saf¯ā˓, ” DSB, vol. pp. XV, pp. 249–51.Google Scholar
Marre, Aristide, ed., 1880. “Le Triparty en la science des nombres par Maistre Nicolas Chuquet Parisien”, Bulletino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche 13: 593659, 693814.Google Scholar
Karl, Menninger, 1957. Zahlwort und Ziffer. Eine Kulturgeschichte der Zahl. I. Zāhlreihe und Zahlsprache. II. Zahlschrift und Rechnen, 2. neubearbeitete und erweiterte Auflage, Göttingen: Vandenhoeck and Ruprecht.Google Scholar
Merton, Robert K., 1968. Social Theory and Social Structure, enlarged edition, New York and London: The Free Press.Google Scholar
Nader, A. N., 1956. Le système philosophique des Mu˓tazila(Premiers penseurs de I'lslam), Beyruth. (Quoted from A. M. Heinen, 1978.)Google Scholar
Seyyed Hossein, Nasr, 1968. Science and Civilization in Islam, Cambridge, Mass.: Harvard University Press.Google Scholar
Nasr, Seyyed Hossein, “Al-Tusī,…Nasīr al-Dīn”, DSB, vol. XIII, pp. 508–14.Google Scholar
Nau, F., 1910. “Notes d'astronomie syrienne, ” Journal Asiatique 10, série 16: 209–28.Google Scholar
Nebbia, G., 1967. “Ibn al-Haytham nel millesimo anniversario della nascita, ” Physis 9: 165214.Google Scholar
Neugebauer, O., Sachs, A., 1945. Mathematical Cuneiform Texts, American Oriental Series, vol. 29, New Haven, Conn.: American Oriental Society.Google Scholar
O'Leary, De Lacy, 1949. How Greek Science Passed to the Arabs, London: Routledge and Kegan Paul. Reprinted 1964.Google Scholar
Oschinsky, Dorothea, 1971. Walter of Henley and Other Treatises on Estate Management and Accounting, Oxford: Oxford University Press.Google Scholar
Angel Gonzales, Palencia, ed., trans., 1953. Al-Fārābī, “Catálogo de las ciencias.” Edición y traduccion Castellana, segunda edición, Madrid: Consejo Superior de Investigaciones Cientificas, Instituto Miguel Asín.Google Scholar
Parker, Richard A., 1972. Demotic Mathematical Papyri, Providence and London: Brown University Press.Google Scholar
Paton, W. R., trans., 1918. The Greek Anthology, vol. V, Loeb Classical Library, vol. 86, London: Heinemann. Reprinted 1979.Google Scholar
Peet, T. Eric, 1923. The Rhind Mathematical Papyrus, British Museum 10057 and 10058. Introduction, Transcription, Translation and Commentary, London: University Press of Liverpool.Google Scholar
Shlomo, Pines, 1970. “Philosophy [in Islam], ” in The Cambridge History of Islam, ed. Holt, P. M., Lambton, Ann K. S., Lewis, Bernard, 2 vols., Cambridge: Cambridge University Press, vol. II, pp. 780823.Google Scholar
Pingree, David 1963. “Astronomy and Astrology in India and Iran, Isis”, 54: 229–46.CrossRefGoogle Scholar
Pingree, David, 1973. “The Greek Influence on Early Islamic Mathematical Astronomy,” Journal of the American Oriental Society 93: 3243.CrossRefGoogle Scholar
Pingree, David, “Abū Ma˓shar, ” DSB, vol. I, pp. 3239.Google Scholar
Pingree, David, “Al-Fazārī,” DSB, vol. IV, pp.555–56.Google Scholar
Pingree, David, “Māshā˓allāh”, DSB, vol. IX, pp. 159–62.Google Scholar
Pingree, David, “'Umar ibn al-Farrukhān al-Tabarī”, DSB, vol. XIII, pp. 538–39.Google Scholar
Rashed, Roshdi, 1982. “Matériaux pour I'histoire des nombres amiables et de l'analyse combinatoire,” Journal for the History of Arabic Science 6: 209–11 (French introduction), 212–78 (Arabic texts).Google Scholar
Rashed, Roshdi, 1983. “Nombres amiables, parties aliquotes et nombres figurés aux Xlllème et XlVème siecles, ” Archive for History of Exact Sciences 28: 107–47.CrossRefGoogle Scholar
Rashed, Roshdi, ed., trans., 1984. Diophante, “Les Arithmétiques,” tômes III (livre IV), IV (livres V, VI, VII). Texte établi et traduit, Paris: “Les Belles Lettres”Google Scholar
Rashed, Roshdi, “Kamāl al-Dīn, ” DSB, vol. VII, pp. 212–19.Google Scholar
Renaud, H. P. J., 1938. “Ibn al-Bannâ de Marrakech, sûfî et mathématicien (XIIIe-XlVe s. J. C.)”, Hespéris 25: 1342.Google Scholar
Renaud, H. P. J., 1944. “Sur un passage d'ibn Khaldun relatif à I'histoire des mathématiques”, Hespéris 31: 3547.Google Scholar
Ritter, Hellmut, 1916. “Ein arabisches Handbuch der Handelswissenschaft,” Islam 7: 191.CrossRefGoogle Scholar
Rodet, Léon, 1878. “L'algébre d'al-Khârizmi et les méthodes indienne et grecque”, Journal Asiatique, 7e série 11: 598.Google Scholar
Rosen, Frederic, ed., trans., 1831. The “Algebra” of Muhammad ben Musa, Edited and Translated,London: The Oriental Translation Fund.Google Scholar
Rosenfeld, B. A., Grigorian, A. T.. “Thābit ibn Qurra”, DSB, vol. XIII, pp. 288–95.Google Scholar
Rosenthal, Franz, ed., trans., 1958. Ibn Khaldûn, “The Muqaddimah.” An Introduction to History, Translated from the Arabic, 3 vols, London: Routledge and Kegan Paul.Google Scholar
Ross, W. D., ed., trans., [1928] 1972. The Works of Aristotle. Translated into English. VIII: Metaphysica, second ed., Oxford: The Clarendon Press.Google Scholar
Rozenfeld, Boris A., 1976. “The List of Physico-Mathematical Works of Ibn al-Haytham Written by Himself”, Historia Mathematica 3: 7576.CrossRefGoogle Scholar
Sabra, A. I., 1968. “Thābit ibn Qurra on Euclid's Parallels Postulate”, Journal of the Warbourg and Courtauld Institutes 31: 1232.CrossRefGoogle Scholar
Sabra, A. I., 1969. “Simplicius' Proof of Euclid's Parallels Postulate“, Journalofthe Warburg and Courtauld Institutes 32: 124.CrossRefGoogle Scholar
Sachs, Abraham J., 1946. “Notes on Fractional Expressions in Old Babylonian Mathematical Texts,” Journal of Near Eastern Studies 5: 203–14.CrossRefGoogle Scholar
Eva, Sachs, 1917. Die fünf platonischen Körper. Zur Geschichte der Mathematik und der Elementenlehre Platons und der Pythagoreer, Philologische Untersuchungen, 24. Heft, Berlin: Weidmannsche Buchhandlung.Google Scholar
Saidan, Ahmad S., 1974. “The Arithmetic of Abū'1-Wafā, Isis 65: 367–75.CrossRefGoogle Scholar
Saidan, Ahmad S., ed., trans., 1978. The “Arithmetic” of al-Uqlīdīsī. The Story of Hindu-Arabic Arithmetic as Told in “Kitābal-Fusūlfi al-Hisāb al-Hindi” by Abū al-Hasan Ahmad ibn Ibrāhīm al-Uqlīdīsī written in Damascus in the Year 341 (A. D. 952/53). Translated and Annotated, Dordrecht: Reidel.Google Scholar
Saidan, Ahmad S., 1978 a. “Number Theory and Series Summations in Two Arabic Texts”. in Proceedings of the First International Symposium for the History of Arabic Science, April 512 1976, ed. al-Hassan, Ahmad Y., Karmi, Ghada, Namrum, Nizar, 1978, vol. II, Aleppo: Aleppo University, Institute for the History of Arabic Science, pp. 145163.Google Scholar
Saidan, Ahmad S., “Abu Mansūr, Al-Baghdadī … ibn Tāhir …, ” DSB, vol. XV, 910.Google Scholar
Saidan, Ahmad S., “Al-Nasawī”, DSB, vol. IX, pp. 614–15.Google Scholar
Saidan, Ahmad S. “Al-Qalasādī”, DSB, vol. XI, pp. 229230.Google Scholar
Saidan, Ahmad S. “Al-Umawī”, DSB, vol. XIII, pp. 539–40Google Scholar
Geza, Sajo, ed., 1964. Boetii de Dacia “Tractatus de eternitate mundi,” Quellen und Studien zur geschichte der Philosophie, IV, Berlin: De Gruyter.Google Scholar
Sarasvati Amma, T. A., 1979. Geometry in Ancient and Medieval India, Delhi: Motilal Banarsidass.Google Scholar
Gad, Sarfatti, 1968. Mathematical Terminology in Hebrew Scientific Literature of the Middle Ages, (In Hebrew, English abstract.), Jerusalem: The Magnes Press/The Hebrew University.Google Scholar
George, Sarton, 1927. Introduction to the History of Science. I. From Homer to Omar Khayyam, Carnegie Institution of Washington, Publication 376, Baltimore: William and Wilkins.Google Scholar
George, Sarton, 1931. Introduction to the History of Science. II. From Rabbi ben Ezra to Roger Bacon, Carnegie Institution of Washington, Publication 376, Baltimore: William and Wilkins.Google Scholar
Jean-Paul, Sartre, 1960. Critique de la raison dialectique précédé de Questions de méthode, tôme I, Théories des ensembles pratiques, Paris: Gallimard.Google Scholar
Aydin, Sayih, 1960. The Observatory in Islam and its Place in the General History of the Observatory, Publications of the Turkish Historical Society, Series VII, no. 38, Ankara:. Türk Tarih Kurumu Basimevi.Google Scholar
Aydin, Sayih, ed., trans., 1962. Abdülhamid ibn Türk'tün katisik denklemlerde mantiki zaruretler adh yazisi ve zamamn cebri (Logical Necessities in Mixed Equations by 'Abd al Hamîd ibn Turk and the Algebra of his Time) Publications of the Turkish Historical Society, Series VII, no. 41, Ankara: Tūrk Tarih Kurumu Basimevi. Reprinted 1985.Google Scholar
Joseph, Schacht, 1974. “Islamic Religious Law”, in The Legacy of Islam, 2nd ed., ed. Schacht, Joseph, Bosworth, C. E., Oxford: Oxford University Press, pp. 392405.Google Scholar
Hermann, Schone, ed., trans., 1903. Herons von Alexandria “Vermessungslehre” und “Dioptra” (Griechisch und deutsch), Heronis Alexandrini Opera quae super-sunt omnia, vol. Ill, Leipzig.: Teubner.Google Scholar
Sesiano, Jacques, 1976. “Un M´emoire d'ibn al-Haytham sur un Probléme arithméti-que solide,” Centaurus 20: 189215.CrossRefGoogle Scholar
Sesiano, Jacques, 1980. “Herstellungsverfahren magischer Quadrate aus islamischer Zeit (I)”, Sudhoffs Archiv 64: 187–96.Google Scholar
Sesiano, Jacques, 1981. “Eine arabische Abhandlung über die Bildung der magischen Quadrate”, Photocopy of manuscript, distributed at the XVIth International Congress of the History of Science, Bucharest.Google Scholar
Sesiano, Jacques, ed., trans., 1982. Books IV to VII of Diophantos's “Arithmetica” in the Arabic Translation Attributed to Qustā ibn Lūqā, Sources in the History of Mathematics and Physical Sciences 3, New York: Springer.Google Scholar
Sesiano, Jacques, 1984. “Une arithmétique médiévale en langue provencale”, Centaurus 27: 2675.CrossRefGoogle Scholar
Soubeyran, Denis, 1984. “Textes mathématiques de Mari,” Revue d'assyriologie 78: 1948.Google Scholar
Mohamed, Souissi, ed., trans., 1969. Ibnal-Bannā', , “Talkhīs a'māl al-hisā;b,” Texte établi, annoté et traduit, Tunis: L'Université de Tunis.Google Scholar
Moritz, Steinschneider, 1865. “Die 'mittleren' Bücher der Araber und ihre Bear-beiter”, Zeitschrift für Mathematik und Physik 10: 456–98.Google Scholar
Moritz, Steinschneider, 1896. “Die arabischen Übersetzungen aus dem Griechischen. Zweiter Abschnitt: Mathematik, ” Zeitschrift der Deutschen Morgenländischen Gesellschaft 50: 161219, 337417.Google Scholar
Heinrich, Suter, 1892. “Das Mathematiker-Verzeichniss im Fihrist des Ibn Abî Jackub an-Nadim,” Zeitschrift fur Mathematik und Physik 37 (supplement):l87.Google Scholar
Heinrich, Suter, 1893. “Nachtrag zu meiner Uebersetzung des Mathematikerverzeichnisses im Fihrist des Ibn Abi Ja˓kûb an-Nadîm,” Zeitschrift für Mathematik und Physik 38: 126–27.Google Scholar
Heinrich, Suter, 1900. “Die Mathematiker und Astronomen der Araber und ihre Werke”, Abhandlungen zur Geschichte der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen 10.Google Scholar
Heinrich, Suter 1901. “Das Rechenbuch des Abû Zakarîjâ el-Hassar”, Bibliotheca Mathematica 3, Folge 2 (1901–1902):1240.Google Scholar
Heinrich, Suter, 1906. “Über das Rechenbuch des Alî ben Ahmed el-Nasawî,” Bibliotheca Mathematica 3, Folge 7 (1906–1907):113–19.Google Scholar
Heinrich, Suter, 1910. “Das Buch der Seltenheiten der Rechenkunst von Abū Kāmil al-Misrī,” Bibliotheca Mathematica 3, Folge 11 (1910–1911):100120.Google Scholar
Heinrich, Suter, 1910. “Das Buch der Auffindung der Sehnen im Kreise von Abū'l-Raihan Muh. el-Bīrūnī. Ūbersetzt und mit Kommentar versehen”, Bibliotheca Mathematica 3, Folge 11 (1910–1911): 1138.Google Scholar
Taylor, Jerome, 1961. The “Didascalicon” of Hugh of St. Victor. A Medieval Guide to the Arts. Translated from the Latin with an Introduction and Notes, Records of Civilization. Sources and Studies, no. 64, New York, London: Columbia University Press.Google Scholar
The Greek Anthology, with an English translation Paton, W. R., vol. V., Loeb Classical Library, vol. 86, London 1918: Heinemann. Reprinted 1979.Google Scholar
Thompson, Stith, 1946. The Folktale, New York:. The Dryden Press.Google Scholar
Thompson, Stith, 1975. Motif-Index of Folk-Literature. A Classification of Narrative Elements in Folktales, Ballads, Myths, Fables, Mediaeval Romances, Exempla, Fabliaux, Jest Books and Local Legends, 6 vols., revised ed., London: Indiana University Press.Google Scholar
Toomer, G. J., 1984. “Lost Greek Mathematical Works in Arabic Translation”, The Mathematical Intelligencer 6 (2): 3238.CrossRefGoogle Scholar
Toomer, G. J., Al-Khwārizmī, ” DSB, vol. VII, pp. 358–65.Google Scholar
Tritton, A. S., 1957. Materials on Muslim Education in the Middle Ages, London: Luzac and Co.Google Scholar
Tropfke, J./Kurt Vogel et al. , 1980. Geschichte der Elementarmathematik. 4. Auflage. Band 1: Arithmetik und Algebra. Vollständig neu bearbeitet von Kurt Vogel, Karin Reich and Helmuth, Gericke, Berlin and New York: W. de Gruyter.Google Scholar
van der, Waerden B. L., 1983. Geometry and Algebra in Ancient Civilizations, Berlin: Springer Verlag.CrossRefGoogle Scholar
Jean Pierre, Vernant, 1982. The Origins of Greek Thought, Ithaca, N. Y.: Cornell University Press.Google Scholar
J., Vernet, “Ibn al-Bannā˓”, DSB, vol. I, pp. 437f.Google Scholar
Kurt, Vogel, ed., 1963. Mohammed ibn Musa Alchwarizmi's Algorismus. Das früheste Lehrbuch zum Rechnen mit indischen Ziffern. Nach den einzigen (lateinischen) Handschrift (Cambridge Un. Lib. Ms. Ii.6.5) in Faksimile mit Transkription und Kommentar herausgegeben, Aalen: Otto Zeller.Google Scholar
Kurted, Vogel, trans., 1968. Chiu chang suan shu. Neun Bücher arithmetischer Technik. Ein chinesisches Rechenbuch für den praktischen Gebrauch aus der frühen Hanzeit (202 v. Chr. bis 9 n. Chr.), Ostwalds Klassiker der Exakten Wissenschaften. Neue Folge, Band 4, Braunschweig: Friedrich Vieweg and Sohn.Google Scholar
Kurt, Vogel, Gerstinger, H., 1932. “Eine stereometrische Aufgabensammlung im Pap. Gr. Vind. 19996”, Mitteilungen aus der Papyrussammlung der Nationalbibliothek in Wien, N. S. L, Griech. literar. Papyri 1, Wien, 1176.Google Scholar
James, Waltz, 1981. “Review of Conversion to Islam in the Medieval Period: An Essay in Quantitative History by R. W. Bulliett, 1979,”Speculum 56: 360–62.Google Scholar
Watt, W. Montgomery, Alford, T. Welch, 1980. Der Islam.I. Mohammed und die Frühzeit - Islamisches Recht - Religiöses Leben, Die Religionen der Menschheit, Band 25,1, Stuttgart: W. Kohlhammer.Google Scholar
Wiedemann, Eilhard, 1970. Aufsätze zur arabischen Wissenschaftsgeschichte. 2 vols. Mit einem Vorwort und Indices herausgegeben von Wolfdietrich Fischer, Collectanea VI/1–2, Hildesheim and New York: Georg Olm.Google Scholar
Woepcke, Franz, ed., trans., 1851. “L'Algèbré” d'omar Alkhayyâmî, publiée, traduite et accompagnée d'extraits de manuscrits inédits, Paris: Benjamin Duprat.Google Scholar
Woepcke, Franz, 1852. “Notice sur une théorie ajoutée par Thâbit ben Korrah à l'arithmétique spéculative des Grecs,” Journal Asiatique, 4e série 20: 420–29.Google Scholar
Woepcke, Franz, 1853. Extrait du Fakhrî, traité d'algébre par Aboû Bekr Mohammed ben Alhacan Alkarkhî; précédé d'un mémoire sur l'algébre indéterminé chez les Ara-bes, Paris: L'Imprimerie Impériale.Google Scholar
Woepcke, Franz, 1854. “Recherches sur l'histoire des sciences mathématiques chez les Orien-taux, d'aprés des traités inédits arabes et persans. Premier article. Notice sur des notations algébriques employées par les Arabes, ” Journal Asiatique, 5e série 4: 348–84.Google Scholar
Woepcke, Franz, 1859. “Traduction du traité d'arithmétique d'aboûl Hacan Alî Ben Mohammed Alkalcâdî, ” Atti dell'accademia Pontificia de' Nuovi Lincei 18581859, (Roma) 12: 230–75, 399438.Google Scholar
Woepcke, Franz, 1861. “Traduction d'un fragment anonyme sur la formation des triangles rectangles en nombres entiers, et d'un traité; sur le même sujet par Aboû Dja˓far Mohammed Ben Alhocaïn, ” Atti dell'accademia Pontificia de' Nuovi Lincei 18601861, (Roma) 14: 221–27, 241–69, 301–24, 343–56.Google Scholar
Woepcke, Franz, 1863. “Mémoires sur la propagation des chiffres indiens, ” Journal Asiatique, 6e serie 1: 2779, 234–90, 442529.Google Scholar
Youschkevitch, A. P., 1964. See Yuschkewitsch A. P., 1964.Google Scholar
Youschkevitch, A. P., “Abū'1-Wafā;˓”, DSB, vol. I, pp. 3943.Google Scholar
Youschkevitch, A. P., Rosenfeld, B. A.. “Al-Khayyāmī”, DSB, vol. VII, pp. 323–34.Google Scholar