Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T10:22:05.388Z Has data issue: false hasContentIssue false

Trajectory planning and low-chattering fixed-time nonsingular terminal sliding mode control for a dual-arm free-floating space robot

Published online by Cambridge University Press:  16 June 2021

Wen Yan
Affiliation:
College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Yicheng Liu*
Affiliation:
College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Qijie Lan
Affiliation:
Xichang Satellite Launch Center, Xichang 615000, China
Tao Zhang
Affiliation:
Department of Automation, Tsinghua University, Beijing 100084, China
Haiyan Tu
Affiliation:
College of Electrical Engineering, Sichuan University, Chengdu 610065, China
*
*Corresponding author. Email: [email protected]

Abstract

This paper addresses fixed-time trajectory tracking for a dual-arm free-floating space robot (FFSR) with the large initial errors and bounded uncertainty. A wrist-based trajectory planning method is improved by fixed-time stability to fast eliminate the error caused by singularity. Then, a novel low-chattering and global-nonsingular fixed-time terminal sliding mode control strategy is studied by state approaching angle and switching sliding mode; the practical fixed-reachable Lyapunov stability analysis is presented for a mechanical control system. In the end, the proposed trajectory planning method and controller are combined to improve the tracking accuracy of end-effector to the nanoscale. Simulation results validate the effectiveness of the proposed methodologies.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hiltz, M., Rice, C., Boyle, K. and Allison, R., “Canadarm: 20 years of mission success through adaptation,” Proceedings of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space., Quebec:CSA (2001) pp. 1–8.Google Scholar
Andary, J., Spidaliere, P. and Sosnay, R., “The Development Test Flight of the Flight Telerobotic Servicer,” 4th Annual Workshop on Space Operations Applications and Research (1991) pp. 151–158.Google Scholar
Hirzinger, G., Brunner, B., Dietrich, J. and Heindl, J., “Sensor-based space robotics-rotex and its telerobotic features,” IEEE Trans. Robot. Autom. 9(5), 649663 (1993).10.1109/70.258056CrossRefGoogle Scholar
Oda, M., “Space Robot Experiments on NASDA’s ETS-VII Satellite-Preliminary Overview of the Experiment Results,” Proceedings 1999 IEEE International Conference on Robotics and Automation (1999) pp. 1390–1395.Google Scholar
Wu, H., Sun, F., Sun, Z. and Wu, L., “Optimal trajectory planning of a flexible dual-arm space robot with vibration reduction,” J. Intell. Robot. Syst. 40(2), 147163 (2004).10.1023/B:JINT.0000038946.21921.c7CrossRefGoogle Scholar
Xu, W., Peng, J., Liang, B. and Mu, Z., “Hybrid modeling and analysis method for dynamic coupling of space robots,” IEEE Trans. Aerosp. Electron. Syst. 52(1), 8598 (2016).10.1109/TAES.2015.140752CrossRefGoogle Scholar
Agrawal, S. K. and Shirumalla, S., “Planning motions of a dual-arm free-floating manipulator keeping the base inertially fixed,” Mech. Mach. Theory 30(1), 5970 (1995).10.1016/0094-114X(94)00025-GCrossRefGoogle Scholar
Huang, P., Xu, Y. and Liang, B., “Dynamic balance control of multi-arm free-floating space robots,” Int. J. Adv. Robot. Syst. 2(2), 117124 (2005).10.5772/5797CrossRefGoogle Scholar
Xu, W., Liu, Y. and Xu, Y., “The coordinated motion planning of a dual-arm space robot for target capturing,” Robotica 30(5), 755771 (2012).10.1017/S0263574711001007CrossRefGoogle Scholar
Yan, L., Mu, Z. and Xu, W., “Base Centroid Virtual Manipulator Modeling and Applications for Multi-Arm Space Robots,” 2014 13th International Conference on Control Automation Robotics & Vision (2014) pp. 1542–1547.Google Scholar
Xu, W., Liu, H., She, Y. and Liang, B., “Singularity-Free Path Planning of Dual-Arm Space Robot for Keeping the Base Inertially Stabilized During Target Capturing,” 2012 IEEE International Conference on Robotics and Biomimetics (2012) pp. 1536–1541.Google Scholar
Xu, W., Meng, D., Liu, H., Wang, X. and Liang, B., “Singularity-free trajectory planning of free-floating multiarm space robots for keeping the base inertially stabilized,” IEEE Trans. Syst. Man Cybern. -Syst. 49(12), 24642477 (2019).10.1109/TSMC.2017.2693232CrossRefGoogle Scholar
Liu, Y., Xie, K., Zhang, T. and Cai, N., “Trajectory planning with pose feedback for a dual-arm space robot,” J. Control Sci. Eng. 2016, 1–9 (2016).Google Scholar
Zhongyi, C. and Fuchun, S., “Robust Tracking Control of Electrical Driven Free-Floating Space Robot Manipulators,” 2006 9th International Conference on Control, Automation, Robotics and Vision (2006) pp. 1–6.Google Scholar
Parlaktuna, O. and Ozkan, M., “Adaptive control of free-floating space robots in cartesian coordinates,” Adv. Robot. 18(9), 943959 (2004).10.1163/1568553042225732CrossRefGoogle Scholar
Chu, Z., Cui, J. and Sun, F., “Fuzzy adaptive disturbance-observer-based robust tracking control of electrically driven free-floating space manipulator,” IEEE Syst. J. 8(2), 343352 (2014).10.1109/JSYST.2012.2220171CrossRefGoogle Scholar
Mobayen, S., “Design of LMI-based sliding mode controller with an exponential policy for a class of underactuated systems,” Complexity 21(5), 117124 (2016).10.1002/cplx.21636CrossRefGoogle Scholar
Zhihuang, C. and Li, C., “Dynamic and Variable Structure Control for Dual-Arm Space Robot to Track Desired Trajectory in Workspace,” 2006 Chinese Control Conference (2006) pp. 1547–1551.Google Scholar
Mobayen, S. and Ma, J., “Robust finite-time composite nonlinear feedback control for synchronization of uncertain chaotic systems with nonlinearity and time-delay,” Chaos Solitons Fractals 114, 4654 (2018).10.1016/j.chaos.2018.06.020CrossRefGoogle Scholar
Mobayen, S. and Tchier, F., “Nonsingular fast terminal sliding-mode stabilizer for a class of uncertain nonlinear systems based on disturbance observer,” Sci. Iran. 24(3), 14101418 (2017).Google Scholar
Haghighi, D. A. and Mobayen, S., “Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems,” ISA Trans. 75, 216225 (2018).10.1016/j.isatra.2018.02.006CrossRefGoogle Scholar
Guo, Y.-S. and Chen, L., “Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance,” Appl. Math. Mech.-Engl. Ed. 29(5), 583590 (2008).10.1007/s10483-008-0503-1CrossRefGoogle Scholar
Shi, L., Katupitiya, J. and Kinkaid, N., “A Robust Attitude Controller for a Spacecraft Equipped with a Robotic Manipulator,” 2016 American Control Conference (ACC) (2016) pp. 4966–4971.Google Scholar
Guo, S., Li, D., Meng, Y. and Fan, C., “Task space control of free-floating space robots using constrained adaptive RBF-NTSM,” Sci. China-Technol. Sci. 57(4), 828837 (2014).10.1007/s11431-014-5487-3CrossRefGoogle Scholar
Moosavian, S. A. A. and Papadopoulos, E., “Free-flying robots in space: An overview of dynamics modeling, planning and control,” Robotica 25(5), 537547 (2007).10.1017/S0263574707003438CrossRefGoogle Scholar
Jiang, B., Hu, Q. and Friswell, M. I., “Fixed-time attitude control for rigid spacecraft with actuator saturation and faults,” IEEE Trans. Control Syst. Technol. 24(5), 18921898 (2016).10.1109/TCST.2016.2519838CrossRefGoogle Scholar
Polyakov, A., “Fixed-time stabilization via second order sliding mode control,” IFAC Proc. Vol. 45(9), 254258 (2012).CrossRefGoogle Scholar
Mobayen, S. and Yazdanpanah, M. J., “A Finite-Time Tracker for Nonholonomic Systems Using Recursive Singularity-Free FTSM,” Proceedings of the 2011 American Control Conference (2011) pp. 1720–1725.Google Scholar
Zuo, Z., “Non-singular fixed-time terminal sliding mode control of non-linear systems,” IET Contr. Theory Appl. 9(4), 545552 (2014).10.1049/iet-cta.2014.0202CrossRefGoogle Scholar
Ni, J., Liu, L., Liu, C., Hu, X. and Li, S., “Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system,” IEEE Trans. Circuits Syst. II-Express Briefs 64(2), 151155 (2016).CrossRefGoogle Scholar
Corradini, M. L. and Cristofaro, A., “Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees,” Automatica 95, 561565 (2018).10.1016/j.automatica.2018.06.032CrossRefGoogle Scholar
Liu, Y., Yan, W., Zhang, T., Yu, C. and Tu, H., “Trajectory tracking for a dual-arm free-floating space robot with a class of general nonsingular predefined-time terminal sliding mode,” IEEE Trans. Syst. Man Cybern. Syst., 1–14 (2021). doi: 10.1109/TSMC.2021.3064898.CrossRefGoogle Scholar
Craig, J. J., Introduction to Robotics: Mechanics and Control, 3/E (Pearson Education India, 2009).Google Scholar
Buckholtz, K. R., “Approach Angle-Based Switching Function for Sliding Mode Control Design,” Proceedings of the 2002 American Control Conference (2002) pp. 2368–2373.Google Scholar
Crassidis, J. L. and Markley, F. L., “Sliding mode control using modified rodrigues parameters,” J. Guid. Control Dyn. 19(6), 13811383 (1996).10.2514/3.21798CrossRefGoogle Scholar
Xu, W., Liang, B., Liu, Y., Li, C. and Qiang, W., “A novel approach to avoid singularities of puma-type manipulators,” Acta Autom. Sin. 34(6), 670675 (2008).10.3724/SP.J.1004.2008.00670CrossRefGoogle Scholar
Paul, R. P. and Stevenson, C. N., “Kinematics of robot wrists,” Int. J. Robot. Res. 2(1), 3138 (1983).10.1177/027836498300200103CrossRefGoogle Scholar
Ryu, S. H. and Park, J. H., “Auto-Tuning of Sliding Mode Control Parameters Using Fuzzy Logic,” Proceedings of the 2001 American Control Conference (2001) pp. 618–623.Google Scholar
Han, W., Xiong, L. and Yu, Z., “Interconnected pressure estimation and double closed-loop cascade control for an integrated electrohydraulic brake system,” IEEE/ASME Trans. Mech. 25(5), 24602471 (2020).10.1109/TMECH.2020.2978534CrossRefGoogle Scholar
Huang, B. and Yang, Q., “Double-loop sliding mode controller with a novel switching term for the trajectory tracking of work-class ROVs,” Ocean Eng. 178, 80–94 (2019).Google Scholar
Sun, L. and Liu, Y., “Fixed-time adaptive sliding mode trajectory tracking control of uncertain mechanical systems,” Asian J. Control 22(5), 20802089 (2020).10.1002/asjc.2109CrossRefGoogle Scholar
Wu, J., Bin, D., Feng, X., Wen, Z. and Zhang, Y., “Ga based adaptive singularity-robust path planning of space robot for on-orbit detection,” Complexity 2018, 1–11 (2018).Google Scholar
Zhao, S., Zhu, Z. and Luo, J., “Multitask-based trajectory planning for redundant space robotics using improved genetic algorithm,” Appl. Sci. 9(11), 2226 (2019).10.3390/app9112226CrossRefGoogle Scholar
Jia, Y., Zhu, Z. and Misra, A. K., “Robust trajectory tracking control of a dual-arm space robot actuated by control moment gyroscopes,” Acta Astronautica 137, 287–301 (2017).Google Scholar
Zhao, Y., Huang, P. and Zhang, F., “Dynamic modeling and super-twisting sliding mode control for tethered space robot,” Acta Astronaut. 143, 310–321 (2018).Google Scholar