Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:57:22.008Z Has data issue: false hasContentIssue false

Time-suboptimal quasi-continuous path generation for industrial robots*

Published online by Cambridge University Press:  09 March 2009

I. Troch
Affiliation:
University of Technology, Karlsplatz 13, A-1040 Wien (Austria)

Summary

The problem of constructing a smooth path with respect to time through N given points in configuration space is considered. Two variants of an algorithm suggested by Paul are presented and evaluated. It is shown that the algorithms suggested in this paper yield in general considerable improvements in two respects: Firstly, the deviation of the resulting path from the given points is reduced markedly and secondly, the overall time needed for the movement is reduced significantly and consequently, is closer to the true minimum-time. The price to be paid for these improvements is a moderate increase of computation time allowing still online use of the algorithm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bobrow, J.E., Dubowsky, S. and Gibson, J.S., “Time-Optimal Control of Robotic Manipulators Along Specified Paths.” Int. J. Rob. Res. 4, 317 (1985).CrossRefGoogle Scholar
2.Pfeiffer, F. and Johanni, R., “A Concept for Manipulator Trajectory PlanningIEEE J. Rob. and Autom. RA-3, 115123 (1987).CrossRefGoogle Scholar
3.Shin, K.G. and McKay, N.D., “Minimum-Time Control of Robotic Manipulators with Geometric Path ConstraintsIEEE Trans. AC-30, 531541 (1985).Google Scholar
4.Troch, I., “Time-Optimal Continuous Path Generation for Industrial Robots Under Realistic Assumptions” (In Press).Google Scholar
5.Singh, S. and Leu, M.C., “Optimal Trajectory Generation for Robotic Manipulators Using Dynamic ProgrammingTrans. ASME, J. Dyn. Syst., Meas, and Control 109, 8896 (1987).Google Scholar
6.Schmitt, D., Soni, A.H., Srinivasan, V. and Naganthan, S., “Optimal Motion Planning of Robot ManipulatorsJ. Mechan., Transmiss., and Autom. in Design 107, 239244 (1985).Google Scholar
7.Desoyer, K., Kopacek, P. and Troch, I., Industrieroboter und Hand habungsgeräte (Oldenbourg, München, 1985).Google Scholar
8.Paul, R., “Manipulator Cartesian Path ControlIEEE Trans. SMC-9, 702711 (1979).Google Scholar
9.Paul, R.P., Robot Manipulators (MIT Press, Cambridge, MA, 1982).Google Scholar
10.Bruhn, H. and Ersü, E., “Grundlagen der analytischen Bewegungs planung für RoboterVDI Ber. 598, 461472 (1986).Google Scholar
11.Chand, S. and Doty, K.L., “On-Line Polynomial Trajectories for Robot ManipulatorsInt. J. Rob. Res. 4, 3848 (1985).CrossRefGoogle Scholar
12.Goldenberg, A.A. and Lawrence, D.L., “End Effector Path GenerationTrans. ASME, J. Dyn. Syst., Meas, and Control 108, 158162 (1986).Google Scholar
13.Goldenberg, A.A. and Benhabib, B., “End Effector Optimal Path Generation” IEEE Trans. SMC (in Press).Google Scholar
14.Jeon, H.T. and Eslami, M., “A Minimum-Time Joint-Trajectory Planning for Industrial Manipulator with Input Torque Constraints” 1986 IEEE Conf. Rob. and Autom. 1, 559564 (1986).Google Scholar
15.Luh, J.Y.S. and Lin, C.S., “Optimum Path Planning for Mechanical ManipulatorsTrans. ASME, J. Dyn. Syst., Meas. and Control 102, 142151 (1981).Google Scholar
16.Luh, J.Y.S. and Walker, M.W., “Minimum-Time Along the Path for a Mechanical ArmProc. 16th CDC 755759 (1977).Google Scholar
17.Seeger, G.H. and Paul, R.P., “Optimising Robot Motion Along a Predefined PathProc. 1985 IEEE Conf. Rob. and Autom.765770 (1985).Google Scholar
18.Lee, C.S.G. and Lee, B.H., “Planning of Straight Line Manipulator Trajectory in Cartesian Space with Torque ConstraintsProc. 23rd CDC 16031609 (1984).Google Scholar
19.Kim, B.K. and Shin, K.G., “Minimum-Time Path Planning for Robot Arms and Their DynamicsIEEE Trans. SMC-15, 213223 (1985).Google Scholar
20.Patels, R., “Zur Zeitparametrisierung quasikontinuierlicher Bahnen für Industrieroboter.Diplomarbeit, TU Wien (1987).Google Scholar