Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T03:20:13.716Z Has data issue: false hasContentIssue false

Sliding mode collision-free navigation for quadrotors using monocular vision

Published online by Cambridge University Press:  20 June 2018

Diego Mercado*
Affiliation:
Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854-8058, USA
Pedro Castillo
Affiliation:
Sorbonne Universitès, Université de Technologie de Compiègne, CNRS, Heudiasyc UMR 7253, CS 60 319, 60 203 Compiègne cedex, France. E-mail: [email protected]
Rogelio Lozano
Affiliation:
Sorbonne Universitès, Université de Technologie de Compiègne, CNRS, Heudiasyc UMR 7253, CS 60 319, 60 203 Compiègne cedex, France. E-mail: [email protected] LAFMIA UMI 3175 CINVESTAV-CNRS, Avenida Instituto Politècnico Nacional 2508, San Pedro Zacatenco, 07360 Mexico City, CDMX, Mexico. E-mail: [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

Safe and accurate navigation for autonomous trajectory tracking of quadrotors using monocular vision is addressed in this paper. A second order Sliding Mode (2-SM) control algorithm is used to track desired trajectories, providing robustness against model uncertainties and external perturbations. The time-scale separation of the translational and rotational dynamics allows to design position controllers by giving a desired reference in roll and pitch angles, which is suitable for practical validation in quad-rotors equipped with an internal attitude controller. A Lyapunov based analysis proved the closed-loop stability of the system despite the presence of unknown external perturbations. Monocular vision fused with inertial measurements are used to estimate the vehicle's pose with respect to unstructured scenes. In addition, the distance to potential collisions is detected and computed using the sparse depth map coming also from the vision algorithm. The proposed strategy is successfully tested in real-time experiments, using a low-cost commercial quadrotor.

Type
Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Song, Y., Xian, B., Zhang, Y., Jiang, X. and Zhang, X., “Towards autonomous control of quadrotor unmanned aerial vehicles in a GPS-denied urban area via laser ranger finder,” Optik-Int. J. Light Electron Opt. 126 (23), 38773882 (2015), ISSN 0030-4026.Google Scholar
2. Courbon, J., Mezouar, Y., Guenard, N. and Martinet, P., “Vision-based navigation of unmanned aerial vehicles,” Control Eng. Pract. 18 (7), 789799 (2010), ISSN 0967-0661.Google Scholar
3. Bi, Y. and Duan, H., “Implementation of autonomous visual tracking and landing for a low-cost quadrotor,” Optik-Int. J. Light Electron Opt. 124 (18), 32963300 (2013), ISSN .Google Scholar
4. Maravall, D., de Lope, J. and Fuentes, J., “Vision-based anticipatory controller for the autonomous navigation of an UAV using artificial neural networks,” Neurocomputing 151 (1), 101107 (2015), ISSN .Google Scholar
5. Li, P., Garratt, M., Lambert, A. and Lin, S., “Metric sensing and control of a quadrotor using a homography-based visual inertial fusion method,” Robot. Auton. Syst. 76, 114 (2016), ISSN .Google Scholar
6. Klein, G. and Murray, D., “Parallel Tracking and Mapping for Small AR Workspaces,” Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Nara, Japan (2007).Google Scholar
7. Achtelik, M., Achtelik, M., Weiss, S. and Siegwart, R., “Onboard IMU and Monocular Vision Based Control for MAVs in Unknown In- and Outdoor Environments,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China (2011).Google Scholar
8. Weiss, S., Achtelik, M., Lynen, S., Chli, M. and Siegwart, R., “Real-time Onboard Visual-Inertial State Estimation and Self-Calibration of MAVs in Unknown Environments,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA (2012).Google Scholar
9. Weiss, S., Scaramuzza, D. and Siegwart, R., “Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments,” J. Field Robot. 28 (6), 854874 (2011).Google Scholar
10. Weiss, S., Achtelik, S. M., Lynen, S., Achtelik, M., Kneip, L., Chli, M. and Siegwart, R.Monocular vision for long-term micro aerial vehicle state estimation: A compendium,” J. Field Robot. 30: 803831. doi:10.1002/rob.21466, (2013).Google Scholar
11. Engel, J., Sturm, J. and Cremers, D., “Camera-Based Navigation of a Low-Cost Quadrocopter,” Proceedings of the IEEE International Conference on Intelligent Robot Systems (IROS), Vilamoura, Portugal (2012).Google Scholar
12. Engel, J., Sturm, J. and Cremers, D., “Scale-aware navigation of a low-cost quadrocopter with a monocular camera,” Robot. Auton. Syst. 62 (11), 16461656 (2014).Google Scholar
13. Nieuwenhuisen, M., Droeschel, D., Beul, M. and Behnke, S., “Obstacle Detection and Navigation Planning for Autonomous Micro Aerial Vehicles,” Proceedings of International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA (2014).Google Scholar
14. Beyeler, A., Zufferey, J. and Floreano, D., “3D Vision-Based Navigation for Indoor Microflyers,” Proceedings IEEE International Conference on Robotics and Automation (ICRA), Roma, Italy (2007).Google Scholar
15. Bills, C., Chen, J. and Saxena, A., “Autonomous MAV Flight in Indoor Environments Using Single Image Perspective Cues,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China (2011).Google Scholar
16. Mori, T. and Scherer, S., “First Results in Detecting and Avoiding Frontal Obstacles From a Monocular Camera for Micro Aerial Vehicles,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (2013).Google Scholar
17. Alvarez, H., Paz, L. M., Sturm, J. and Cremers, D., “Collision Avoidance for Quadrotors With a Monocular Camera,” Proceedings of The 12th International Symposium on Experimental Robotics (ISER), Marrakech and Essaouira, Morocco (2014).Google Scholar
18. Naldi, R., Furci, M., Sanfelice, R. G. and Marconi, L., “Robust global trajectory tracking for underactuated VTOL aerial vehicles using inner-outer loop control paradigms,” IEEE Trans. Autom. Control 62 (1), 97112 (2017).Google Scholar
19. Liu, H., Zhao, W. and Zuo, Z., “Robust control for quadrotors with multiple time-varying uncertainties and delays,” IEEE Trans. Ind. Electron. 64 (2), 13031312 (2017).Google Scholar
20. Aguilar-Ibaez, C., “Stabilization of the PVTOL aircraft based on a sliding mode and a saturation function,” Int. J. Robust Nonlinear Control 27, 843859 (2017).Google Scholar
21. Yeh, F., “Attitude controller design of mini-unmanned aerial vehicles using fuzzy sliding-mode control degraded by white noise interference,” IET Control Theory Appl. 6 (9), 12051212 (2012).Google Scholar
22. Alwi, H. and Edwards, C., “Sliding mode fault-tolerant control of an octorotor using linear parameter varying-based schemes,” IET Control Theory Appl. 9 (4), 618636 (2015).Google Scholar
23. Derafa, L., Fridman, L., Benallegue, A. and Ouldali, , “Super Twisting Control Algorithm for the Four Rotors Helicopter Attitude Tracking Problem,” Proceedings of the 11th International Workshop on Variable Structure Systems, Mexico City, Mexico (2010).Google Scholar
24. Xu, R. and Özgüner, Ü., “Sliding Mode Control of a Quadrotor Helicopter,” Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA (2006).Google Scholar
25. Mercado, D., Castillo, P., Castro, R. and Lozano, R., “2-Sliding Mode Trajectory Tracking Control and EKF Estimation for Quadrotors,” Proceedings of the 19th IFAC World Conference, Cape Town, South Africa (2014).Google Scholar
26. Castillo, P., Lozano, R. and Dzul, A., Modelling and Control of Mini-Flying Machines (Springer-Verlag, Londres, 2005).Google Scholar
27. Bertrand, S., Gunard, N., Hamel, T., Piet-Lahanier, H. and Eck, L., “A hierachical controller for miniature VTOL UAVs: Desing and stability analysis using singular perturbation theory,” Control Eng. Practice 19, 10991108 (2011).Google Scholar
28. Shtessel, Y., Edwards, C., Fridman, L. and Levant, A., Sliding Mode Control and Observation (Birkhäuser Basel, Springer New York, 2010).Google Scholar
29. Shevitz, D. and Paden, B.. “Lyapunov stability theory of nonsmooth systems,” IEEE Trans. Automat. Control 39, 19101914 (1994).Google Scholar