Published online by Cambridge University Press: 15 May 2014
Mechanical regulator-free bicycle robots have lighter weight and fewer actuators than the traditional regulator-based bicycle robots. In order to deal with the difficulty of maintaining balance for this kind of bicycle robot, we consider a front-wheel drive and mechanical regulator-free bicycle robot. We present the methodologies for realizing the robot's ultra-low-speed track-stand motion, moderate-speed circular motion and high-speed rectilinear motion. A simplified dynamics of the robot is developed using three independent velocities. From the dynamics, we suggest there may be an underactuated rolling angle in the system. Our balancing strategies are inspired by human riders' experience, and our control rules are based on the bicycle system's underactuated dynamics. In the case of track-stand and circular motion, we linearize the frame's rolling angle and configure the robot to maintain balance by the front-wheel's motion with a fixed front-bar turning angle. In the case of the rectilinear motion, we linearize both front-bar steering angle and front-wheel rotating angle, and configure the system to maintain balance by the front-bar's turning with a constant front-wheel rotating rate. Numerical simulations and physical experiments are given together to validate the effectiveness of our control strategies in realizing the robot's proposed three motions.