Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T20:08:17.230Z Has data issue: false hasContentIssue false

A semi-flexible kinematic model for serial manipulators

Published online by Cambridge University Press:  09 March 2009

Louise Cléroux
Affiliation:
Dépt, de Génie industriel, École Poly technique de Montréal, Montréal, Québec (Canada) H3C 3A7
Richard Gourdeau
Affiliation:
Dépt, de Génie industriel, École Poly technique de Montréal, Montréal, Québec (Canada) H3C 3A7
Guy M. Cloutier
Affiliation:
Dépt, de Génie industriel, École Poly technique de Montréal, Montréal, Québec (Canada) H3C 3A7

Summary

Structural and control flexibilities affect the absolute precision of serial manipulators. A semi-flexible kinematic model is developed, to improve the absolute static precision. It expands the solid body model by incorporating a spring effect for each joint and a beam effect for each link. Simulation results confirm the adequacy of the model. The dependencies existing between the articulate posture of the manipulator, the effects of the external efforts and the gravitational load on the global structure are properly described. The identifiability of the added parameters is explored on a RR planar robot. It requires efforts and pose errors to be known in the tool frame only.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Everett, L. J. and Hsu, T.W., ”The Theory of Kinematic Parameter Identification for Industrial RobotsTransactions of the ASME: J. Dynamic Systems, Measurement, and Control 110, 96100 (03,1988).Google Scholar
2.Hayati, S. A.,Tso, Kam and Roston, G., “Robot Geometry Calibration”Proceedings: 1988 IEEE International Conference on Robotics and Automation (1988) pp.947951.Google Scholar
3.Hsu, T. W. and Everett, L. J.,“Identification of the Kinematic Parameters of a Robot Manipulator for Positional Accuracy Improvement” ASME Conference on Computers in Engineering (1985) pp. 263267.Google Scholar
4.Stone, H. W.,Kinematic Modeling, Identification, and Control of Robotic Manipulators (Kluwer Academic Publishers,Amsterdam,1987).CrossRefGoogle Scholar
5.Chen, J. and Chao, L. M.,“Positioning Error Analysis for Robot Manipulators with all Rotary Joints”Proceedings: 1986 IEEE International Conference on Robotics and Automation (1986) pp.10111016.Google Scholar
6.Judd, R. P. and Knasinski, A. l. B., “A Technique to Calibrate Industrial Robots with Experimental VerificationIEEE Transactions on Robotics and Automation 6(1), 2030 (1990).CrossRefGoogle Scholar
7.Whitney, D. E., Lozinski, C. A. and Rourke, J.M., “Industrial Robot Forward Calibration Method and ResultsASMEJ. Dynamic Systems, Measurement and Control 108, 18 (03, 1986).CrossRefGoogle Scholar
8.Chang, L.-W. and Hamilton, J. F., “The Kinematics of Robotic Manipulator with Flexible Links using an Equivalent Rigid Link System (ERLS) ModelJ. Dynamic Systems, Measurement, and Control 113, 4853 (03, 1991).CrossRefGoogle Scholar
9.Chang, L.-W. and Hamilton, J. F., “Dynamics of Robotic Manipulators with Flexible LinksJ. Dynamic Systems, Measurement, and Control 113, 5459 (03, 1991).CrossRefGoogle Scholar
10Jonker, B., “A Finite Element Dynamic Analysis of Flexible ManipulatorsInt. J. Robotics Research 9(4), 5974 (1990).CrossRefGoogle Scholar
11Piedboeuf, J.-C., Hurteau, R. and Ziarati, K., “Logiciel de simulation et de commande pour les robots flexibles” Conference Canadienne et Exposition: Automatisation Industrielle (1992) pp. 13.1313.17.Google Scholar
12.Denavit, J. and Hartenberg, R. S., “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices” ASME J. Applied Mechanics 215221 (06, 1955).CrossRefGoogle Scholar
13Zhuang, H., Roth, Z. S., and Hamano, F., “A Complete and Parametrically Continuous Kinematic Model for Robot ManipulatorsIEEE Transactions on Robotics and Automation 8(4), 451463 (1992).CrossRefGoogle Scholar
14.Tang, S. C. and Wang, C. C., “Computation of the Effects of Link Deflections and Joint Compliance on Robot Positioning” Proceeding of the 1987 IEEE International Conference on Robotics and Automation (1987) pp. 910915.Google Scholar
15.Meghdari, A., “A Variational Approach for Modelling Flexibility Effects in Manipulators ArmsRobotica 9, 213217 (1991).CrossRefGoogle Scholar
16.Caenen, J. L. and Angue, J. C., “Identification of Geometric and Non Geometric Parameters of Robots” Proceedings of the 1990 IEEE International Conference on Robotics and Automation (1990) pp. 10321037.Google Scholar
17.Craig, J. J.,Introduction to Robotics: Mechanics and Control, Second Edition, (Addison-Wesley Publishing Company, Reading, Mass., 1989).Google Scholar
18.Bazergui, A., Bui-Quoc, T., Biron, A., Mclntyre, G. and Laberge, C., Résistance des Matériaux, (Éditions de l’École Polytechnique de Montreéal, 1987).Google Scholar
19.Jeannier, P., “Caractéristiques opréatoires des robots d’assemblage”,Thèse de doctoral (Université de Franche-Comtié,Besancon,1985).Google Scholar
20.Nelder, J. A. andMead, R.,“A Simplex Method" for Function MinimizationComputer J.7 308313 (1964).CrossRefGoogle Scholar
21.Powell, M. J. D., “An efficient method for finding the minimum of a function of several variables without calculating derivativesComputer J. 7,155162 (1964).CrossRefGoogle Scholar