Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-21T22:47:16.191Z Has data issue: false hasContentIssue false

Self-adaptive Monte Carlo localization for mobile robots using range finders

Published online by Cambridge University Press:  14 June 2011

Lei Zhang*
Affiliation:
Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université Montpellier II 161 rue Ada, 34392 Montpellier Cedex 5, France E-mails: [email protected], [email protected]
René Zapata
Affiliation:
Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université Montpellier II 161 rue Ada, 34392 Montpellier Cedex 5, France E-mails: [email protected], [email protected]
Pascal Lépinay
Affiliation:
Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université Montpellier II 161 rue Ada, 34392 Montpellier Cedex 5, France E-mails: [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo localization algorithm using self-adaptive samples (abbreviated as SAMCL). By employing a pre-caching technique to reduce the online computational burden, SAMCL is more efficient than the regular MCL. Further, we define the concept of similar energy region (SER), which is a set of poses (grid cells) having similar energy with the robot in the robot space. By distributing global samples in SER instead of distributing randomly in the map, SAMCL obtains a better performance in localization. Position tracking, global localization and the kidnapped robot problem are the three sub-problems of the localization problem. Most localization approaches focus on solving one of these sub-problems. However, SAMCL solves all the three sub-problems together, thanks to self-adaptive samples that can automatically separate themselves into a global sample set and a local sample set according to needs. The validity and the efficiency of the SAMCL algorithm are demonstrated by both simulations and experiments carried out with different intentions. Extensive experimental results and comparisons are also given in this paper.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Thrun, S., Burgard, W. and Fox, D., Probabilistic Robotics (The MIT Press, Cambridge, MA, September 2005).Google Scholar
2.Vahdat, A. R., NourAshrafoddin, N. and Ghidary, S. S., “Mobile Robot Global Localization Using Differential Evolution and Particle Swarm Optimization,” IEEE Congress on Evolutionary Computation (CEC 07), Singapore (2007) pp. 15271534.Google Scholar
3.Hester, T. and Stone, P., “Negative Information and Line Observations for Monte Carlo Localization,” Proceedings of IEEE International Conference on Robotics and Automation ICRA 2008, Pasadena, CA (2008) pp. 27642769.CrossRefGoogle Scholar
4.Ullah, M. M., Pronobis, A., Caputo, B., Luo, J., Jensfelt, P. and Christensen, H. I., “Towards Robust Place Recognition for Robot Localization,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA08), Pasadena, CA (2008) pp. 530537.CrossRefGoogle Scholar
5.Roumeliotis, S. I. and Bekey, G. A., “Bayesian Estimation and Kalman Filtering: A Unified Framework for Mobile Robot Localization,” Proceedings of IEEE International Conference on Robotics and Automation (ICRA '00), San Francisco, CA (2000) vol. 3, pp. 29852992.Google Scholar
6.Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox, D., Hähnel, D., Rosenberg, C., Roy, N., Schulte, J. and Schulz, D., “Probabilistic algorithms and the interactive museum tour-guide robot minerva,” Int. J. Robot. Res. 19, 972999 (2000).CrossRefGoogle Scholar
7.Marchetti, L., Grisetti, G. and Iocchi, L., “A Comparative Analysis of Particle Filter Based Localization Methods,” RoboCup, Bremen, Germany (2006), pp. 442449.Google Scholar
8.Weiss, G., Wetzler, C. and von Puttkamer, E., “Keeping Track of Position and Orientation of Moving Indoor Systems by Correlation of Range-Finder Scans,” Proceedings of the International Conference on Intelligent Robots and Systems, Munich, Germany (1994) vol. 1, pp. 595601.Google Scholar
9.Lamon, P., 3D-Position Tracking and Control for All-Terrain Robots (Springer Tracts in Advanced Robotics, Berlin, Germany, 2008).CrossRefGoogle Scholar
10.Milstein, A., Sánchez, J. N. and Williamson, E. T., “Robust Global Localization Using Clustered Particle Filtering,” AAAI-02, Palo Alto, CA (2002) pp. 581586.Google Scholar
11.Jaulin, L., Kieffer, M., Walter, E. and Meizel, D., “Guaranteed robust nonlinear estimation with application to robot localization,” IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 32 (4), 374381 (2002).CrossRefGoogle Scholar
12.Thrun, S., Fox, D., Burgard, W. and Dellaert, F., “Robust Monte Carlo localization for mobile robots,” Artif. Intell. 128 (1-2), 99141 (2001).CrossRefGoogle Scholar
13.Andreasson, H., Treptow, A. and Duckett, T., “Localization for Mobile Robots Using Panoramic Vision, Local Features and Particle Filter,” Proceedings of IEEE International Conference on Robotics and Automation (ICRA 05), Barcelona, Spain (2005) pp. 33483353.Google Scholar
14.Stéphant, J., Charara, A. and Meizel, D., “Virtual sensor, application to vehicle sideslip angle and transversal forces,” IEEE Trans. Ind. Electron. 51 (2), 278289 (2004).CrossRefGoogle Scholar
15.Stéphant, J., Charara, A. and Meizel, D., “Evaluation of a sliding mode observer for vehicle sideslip angle,” Control Eng. Pract. 15, 803812 (2007).CrossRefGoogle Scholar
16.Choi, M., Sakthivel, R. and Chung, W. K., “Neural network-aided extended kalman filter for slam problem,” Proceedings of IEEE International Conference on Robotics and Automation, Roma, Italy (2007) pp. 16861690.CrossRefGoogle Scholar
17.Morales, Y., Takeuchi, E. and Tsubouchi, T., “Vehicle localization in outdoor woodland environments with sensor fault detection,” Proceedings of IEEE International Conference on Robotics and Automation ICRA 2008, Pasadena, CA (2008) pp. 449454.CrossRefGoogle Scholar
18.Huang, G. P., Mourikis, A. I. and Roumeliotis, S. I., “Analysis and improvement of the consistency of extended kalman filter based slam,” Proceedings of IEEE International Conference on Robotics and Automation ICRA 2008, Pasadena, CA (2008) pp. 473479.CrossRefGoogle Scholar
19.Cox, I. J. and Leonard, J. J., “Modeling a dynamic environment using a bayesian multiple hypothesis approach,” Artif. Intell. 66 (2), 311344 (1994).CrossRefGoogle Scholar
20.Reuter, J., “Mobile Robot Self-Localization Using Pdab,” Proceedings of IEEE International Conference on Robotics and Automation ICRA '00, San Francisco, CA (2000), vol. 4, pp. 35123518.Google Scholar
21.Jensfelt, P. and Kristensen, S., “Active global localization for a mobile robot using multiple hypothesis tracking,” IEEE Trans. Robot. Autom. 17 (5), 748760, 2001.CrossRefGoogle Scholar
22.Gutmann, J. S. and Fox, D., “An Experimental Comparison of Localization Methods Continued,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System, EPFL, Switzerland (2002), vol. 1, pp. 454459.Google Scholar
23.Fox, D., Burgard, W., Kruppa, H. and Thrun, S., “Efficient multi-robot localization based on Monte Carlo approximation,” In Robotics Research: the Ninth International Symposium (Hollerbach, J. and Koditschek, D., eds.) (Springer-Verlag, London, 2000).Google Scholar
24.Kwok, C., Fox, D. and Meila, M., “Real-Time Particle Filters,” Proceedings of the IEEE, vol. 92, no. 3, pp. 469484, 2004.CrossRefGoogle Scholar
25.Pfaff, P., Burgard, W. and Fox, D., “Robust Monte-Carlo Localization Using Adaptive Likelihood Models,” European Robotics Symposium, Palermo, Italy (SpringerVerlag, 2006) pp. 181194.Google Scholar
26.Siagian, C. and Itti, L., “Biologically-Inspired Robotics Vision Monte-Carlo Localization in the Outdoor Environment,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2007, San Diego, CA, (2007) pp. 17231730.Google Scholar
27.Prestes, E., Ritt, M. and Fuhr, G., “Improving Monte Carlo Localization in Sparse Environments Using Structural Environment Information,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2008, Nice, France (2008) pp. 34653470.Google Scholar
28.Thrun, S., Fox, D. and Burgard, W., “Monte Carlo Localization with Mixture Proposal Distribution,” Proceedings of the AAAI National Conference on Artificial Intelligence, Austin, TX (2000) pp. 859865.Google Scholar
29.Zhang, L. and Zapata, R., “Probabilistic Localization Methods of a Mobile Robot Using Ultrasonic Perception System,” Proceedings of IEEE International Conference on Information and Automation (ICIA 2009), Zhuhai, China (2009) pp. 10621067.CrossRefGoogle Scholar
30.Fox, D., “Adapting the sample size in particle filters through kld-sampling,” Int. J. Robot. Res. 22 (12), 9851003 (2003).CrossRefGoogle Scholar
31.Doucet, A., De freitas, N. and Gordon, N., Eds., Sequential Monte Carlo Methods in Practice, (Springer-Verlag, New York, 2001).CrossRefGoogle Scholar
32.Arulampalam, M. S., Maskell, S. and Gordon, N., “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Process. 50, 174188 (2002).CrossRefGoogle Scholar
33.Fox, V., Hightower, J., Liao, L., Schulz, D. and Borriello, G., “Bayesian filtering for location estimation,” IEEE Pervasive Comput. 2 (3), 2433 (2003).CrossRefGoogle Scholar
34.Bekkali, A. and Matsumoto, M., “Bayesian Sensor Model for Indoor Localization in Ubiquitous Sensor Network,” Proceedings of First ITU-T Kaleidoscope Academic Conference Innovations in NGN: Future Network and Services K-INGN 2008, Geneva, Switzerland (2008) pp. 285292.CrossRefGoogle Scholar
35.Blanco, J. L., Gonzalez, J. and Fernandez-Madrigal, J. A., “An optimal filtering algorithm for non-parametric observation models in robot localization,” Proceedings of IEEE International Conference on Robotics and Automation ICRA 2008, Pasadena, CA (2008) pp. 461466.CrossRefGoogle Scholar
36.Blanco, J.-l., Fernández-madrigal, J.-A. and Gonzalez, J., “Towards a unified bayesian approach to hybrid metric-topological slam,” IEEE Trans. Robot. 24, 259270 (2008).CrossRefGoogle Scholar
37.Ko, J. and Fox, D., “Gp-bayesfilters: Bayesian Filtering Using Gaussian Process Prediction and Observation Models,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2008, Nice, France (2008) pp. 34713476.Google Scholar
38.Fox, D., “Kld-sampling: Adaptive Particle Filters,” In: Advances in Neural Information Processing Systems 14 (Dietterich, T. G., Becker, S. and Ghahramani, Z., eds.) (MIT Press, Cambridge, MA, 2001) pp. 713720.Google Scholar
39.Smith, A. F. M. and Gelfand, A. E., “Bayesian statistics without tears: A sampling-resampling perspective,” Am. Stat. 46 (2), 8488 (1992).Google Scholar
40.Doucet, A., Godsill, S. and Andrieu, C., “On sequential monte carlo sampling methods for bayesian filtering,” Stat. Comput. 10 (3), 197208 (2000).CrossRefGoogle Scholar
41.Zhang, L., Zapata, R. and Lépinay, P., “Self-adaptive Monte Carlo Localization for Mobile Robots Using Range Sensors,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), St. Louis, MO (2009) pp. 15411546.Google Scholar
42.Zhang, L. and Zapata, R., “A Three-Step Localization Method for Mobile Robots,” Proceedings of International Conference on Automation, Robotics and Control Systems (ARCS 2009), Orlando, FL (2009) pp. 5056.Google Scholar
43.Zhang, L., Self-Adaptive Markov Localization for Signal-Robot and Multi-Robot systems Ph.D. dissertation (Montpellier, France: University of Montpellier 2, 2010).Google Scholar
44.Cyberbotics Ltd, Webots User Guide (release 6.3.4), Available at http://www.cyberbotics.com/cdrom/common/doc/webots/guide/section7.4.html, Accessed 30 November 2009.Google Scholar