Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T06:16:51.070Z Has data issue: false hasContentIssue false

Research on a multimodal actuator-oriented power-assisted knee exoskeleton

Published online by Cambridge University Press:  17 August 2016

Yali Han*
Affiliation:
School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, China. E-mails: [email protected], [email protected], [email protected], [email protected]
Songqing Zhu
Affiliation:
School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, China. E-mails: [email protected], [email protected], [email protected], [email protected]
Zhou Zhou
Affiliation:
School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, China. E-mails: [email protected], [email protected], [email protected], [email protected]
Yu Shi
Affiliation:
School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, China. E-mails: [email protected], [email protected], [email protected], [email protected]
Dabin Hao
Affiliation:
School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, China. E-mails: [email protected], [email protected], [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

A multimodal actuator was proposed to achieve a more agile power-assisted exoskeleton in uncertain complex walking environments. A power-assisted knee exoskeleton prototype based on a multimodal actuator was constructed. With this multimodal actuator, several modes of operation in the power-assisted knee exoskeleton during a motion cycle are actuated, including series elastic actuation, stiff position control, and energy storage and release. Also, a control strategy for power-assisted knee exoskeleton motion control based on a state machine is developed. The ability of the power-assisted knee exoskeleton to follow human motion was tested, and the results showed that the angle error of the knee exoskeleton followed the human motion is not more than 0.4˚, and the response time error of the knee exoskeleton followed the human motion is not more than 0.2 s.

Type
Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. dollar, A. M. and Herr, H., “Lower extremity exoskeleton and active orthoses: challenges and state-of-the-art,” IEEE Trans. Robot. 24 (1), 144158 (Jan. 2008).Google Scholar
2. Maria, M. M., Santos, C. P., Frizera-Neto, A., and Ceres, R., “Assistive mobility devices focusing on smart walkers: classification and review,” Robot. Auton. Syst. 60 (4), 548562 (Apr. 2012).Google Scholar
3. Viteckova, S., Kutilek, P. and Jirina, M., “Wearable lower limb robotics: A review,” Biocybernetics Biomed. Eng. 33 (2), 96105 (Mar. 2013).Google Scholar
4. Zoss, A., Kazerooni, H. and Chu, A., “Biomechanical design of the berkeley lower extremity exoskeleton,” IEEE/ASME Trans. Mechatronics 11 (2), 128138 (Apr. 2006).Google Scholar
5. Karlin, S., “Raiding Iron man's closet,” IEEE Spectrum 48 (8), 25 (Aug. 2011).Google Scholar
6. Walsh, C. J., Pasch, K. and Herr, H., “An Autonomous, Underactuated Exoskeleton for Load-Carrying Augmentation,” 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (Oct. 2006) pp. 1410–1415.Google Scholar
7. Colombo, G., Joerg, M., Schreier, R. and Dietz, V., “Treadmill training of paraplegic patients using a robotic orthosis,” J. Rehabil. Res. Develop. 37 (6), 693700 (Feb. 2000).Google Scholar
8. Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L. and Contreras-Vidal, J. L., “The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study,” J. NeuroEngineering Rehabil. 12 54 (2015). DOI: 10.1186/s12984-015-0048-y.Google Scholar
9. Banala, S. K., Agrawal, S. K., Kim, S. H. and Scholz, J. P., “Novel gait adaptation and neuromotor training results using an active leg exoskeleton,” IEEE/ASME Trans. Mechatronics 15 (2), 216225 (Apr. 2010).Google Scholar
10. Copilusi, C., Ceccarelli, M. and Carbone, G., “Design and numerical characterization of a new leg exoskeleton for motion assistance,” Robotica 33, 11471162 (2015).Google Scholar
11. Kawamoto, H. and Sankai, Y., “Comfortable Power Assist Control Method for Walking Aid by HAL-3,” 2002 IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, Ibaraki, Japan (Oct. 6–9, 2002) p. 6.Google Scholar
12. Pratt, G. A. and Williamson, M. M., “Series Elastic Actuators,” 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Pittsburgh, PA, USA (Aug 5-9, 1995) pp. 399–406.Google Scholar
13. Ahmadi, M. and Buehler, M., “Stable control of a simulated one-legged running robot with hip and leg compliance,” IEEE Trans. Robot. Autom. 13 (1), 96104 (Mar. 1997).CrossRefGoogle Scholar
14. Paluska, D. and Herr, H., “The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design,” Robot. Auton. Syst. 54 (8), 667673 (Aug. 2006).Google Scholar
15. Schiavi, R., Grioli, G., Sen, S. and Bicchi, A., “VSA-II: A Novel Prototype of Variable Stiffness Actuator for Safe and Performing Robots Interacting with Humans,” 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, (May 19–23, 2008) pp. 2171–2176.Google Scholar
16. Jafari, A., Tsagarakis, N. G., Vanderborght, B. and Caldwell, D. G., “A Novel Actuator with Adjustable Stiffness (AwAS),” 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, (18–22 Oct, 2010) pp. 4201–4206.CrossRefGoogle Scholar
17. Choi, J., Hong, S., Lee, W., Kang, S. and Kim, M., “A robot joint with variable stiffness using leaf springs,” IEEE Trans. Robot. 27 (2), 229238 (Feb. 2011).CrossRefGoogle Scholar
18. Kim, B. S., Song, J. B. and Park, J. J., “A serial-type dual actuator unit with planetary gear train: Basic design and applications,” IEEE/ASME Trans. Mechatronics 15 (1), 108116 (Feb. 2010).Google Scholar
19. Jafari, A., Tsagarakis, N. and Caldwell, D., “Exploiting Natural Dynamics for Energy Minimization using an Actuator with Adjustable Stiffness (AwAS),” 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, (May 9–13, 2011) pp. 4632–4637.Google Scholar
20. Hurst, J. W., Chestnutt, J. E. and Rizzi, A. A., “An actuator with Physically Variable Stiffness for Highly Dynamic Legged Locomotion,” 2004 IEEE International Conference on Robotics and Automation (ICRA), New Orleans, LA, USA, (Apr. 26–May 1, 2004) pp. 4662–4667.CrossRefGoogle Scholar
21. Shafer, A. S. and Kermani, M., “On the feasibility and suitability of MR fluid clutches in human-friendly manipulators,” IEEE/ASME Trans. Mechatronics 16 (6), 10731082 (Oct. 2011).Google Scholar
22. Tenzer, Y., Davies, B. L. and Baena, F., “Four-state rotary joint control: Results with a novel programmable brake,” IEEE/ASME Trans. Mechatronics 17 (5), 915923 (May 2011).Google Scholar
23. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D. G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L. C. and Wolf, S., “Variable impedance actuator: A review,” Robot. Auton. Syst. 61 (12), 16011614 (2013).CrossRefGoogle Scholar
24. Tagliamonte, N., Sergi, F., Accoto, D., Carpino, G., Guglielmelli, E., “Double actuation architectures for rendering variable impedance in compliant robots: A review,” Mechatronics 22 (8), 11871203 (2012).Google Scholar
25. Leach, D., Gunther, F., Maheshwari, N. and Iida, F., “Linear multimodal actuation through discrete coupling,” IEEE/ASME Trans. Mechatronics 19 (3), 827839 (May 2013).Google Scholar
26. Yali, H., Aiguo, S., Haitao, G. and Songqing, Z., “The muscle activation patterns of lower limb during stair climbing at different backpack load[J],” Acta Bioeng. Biomech. 17 (3), (2015). DOl:10.5277/ABB-00155-2014-06.Google Scholar