Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T06:29:39.473Z Has data issue: false hasContentIssue false

Redundantly actuated 3-RRR spherical parallel manipulator used as a haptic device: improving dexterity and eliminating singularity

Published online by Cambridge University Press:  09 July 2014

Houssem Saafi
Affiliation:
Department of GMSC, Pprime Institute CNRS, ENSMA, University of Poitiers, UPR 3346, France E-mail: [email protected], [email protected]
Med Amine Laribi*
Affiliation:
Department of GMSC, Pprime Institute CNRS, ENSMA, University of Poitiers, UPR 3346, France E-mail: [email protected], [email protected]
Said Zeghloul
Affiliation:
Department of GMSC, Pprime Institute CNRS, ENSMA, University of Poitiers, UPR 3346, France E-mail: [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This paper discusses the study of a spherical parallel manipulator (SPM) used as a haptic device for tele-operation applications. The SPM presents poor behavior in singular configurations. Redundancy is used to eliminate the parallel singularity without major changes in the mechanical structure. Comparisons in terms of kinematic and dynamic behavior between the non-redundant and redundant SPM are presented. The results prove the advantage of introducing redundancy in the actuator and sensor to improve the behavior of the SPM. A new control strategy for the redundant SPM is also proposed. The control strategy has been successfully tested and validated on a SimMechanics model.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jaydeep, H. P., “Robotic assisted minimally invasive surgery,” J. Minim. Access Surg. 5 (1), 17 (2009).Google Scholar
2. Gomes, P., 2011, “Surgical robotics: reviewing the past, analysing the present, imagining the future,” Robot. Comput.-Integr. Manuf. 27 (2), 261266.Google Scholar
3. Chablat, D. and Wenger, P., “Architecture optimization of a 3-DOF parallel mechanism for machining applications, the orthoglide,” IEEE Trans. Robot. Autom. 19 (3), 403410 (2003).CrossRefGoogle Scholar
4. Arsenault, M. and Boudreau, R., “The synthesis of three-degree-of-freedom planar parallel mechanisms with revolute joints (3-RRR) for an optimal singularity free workspace,” J. Robot. Syst. 21 (5), 259274 (2004).Google Scholar
5. Birglen, L., Gosselin, C., Pouliot, N., Monsarrat, B. and Laliberte, T., “SHaDe, a new 3-DOF haptic device,” Robot. Autom. 18 (2), 166175 (2002).Google Scholar
6. Wu, J., Wang, J., Wang, L. and Li, T., “Dynamic model and force control of the redundantly actuated parallel manipulator of a 5-DOF hybrid machine tool,” Robotica 27 (1), 5965 (Jan. 2009).Google Scholar
7. Tatlicioglu, E., Braganza, D., Burg, T. C. and Dawson, D. M., “Adaptive control of redundant robot manipulators with sub-task objectives,” Robotica 27, 873881 (2009).CrossRefGoogle Scholar
8. Sadeghian, H., Villani, L., Keshmiri, M. and Siciliano, B., “Dynamic multi-priority control in redundant robotic systems,” Robotica 31, 11551167 (2013).CrossRefGoogle Scholar
9. Zubizarreta, A., Cabanes, I., Marcos, M. and Pinto, C., “A redundant dynamic model of parallel robots for model-based control,” Robotica 31, 203216 (2013).Google Scholar
10. Kroh, M. et al., “First human surgery with a novel single-port robotic system: Cholecystectomy using the Da Vinci single-site platform,” Surg. Endosc. 25, 35663573 (2011).Google Scholar
11. Thakre, A. A., “Is smaller workspace a limitation for robot performance in laparoscopy?,” J. Urol. 179, 11381143 (2008).CrossRefGoogle ScholarPubMed
12. Laribi, M. A., Rivière, T., Arsicault, M. and Zeghloul, S., “A Design of Slave Surgical Robot Based on Motion Capture,” Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics, Guangzhou, China (Dec. 11–14, 2012) pp. 600605.Google Scholar
13. Chaker, A., Laribi, M. A., Zeghloul, S. and Romdhane, L., “Design and optimization of spherical parallel manipulator as a haptic medical device,” Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society, focusing on industrial and manufacturing theory and applications of electronics, controls, communications, instrumentation and computational intelligence, Melbourne, Australia (Nov. 7–10, 2011) pp. 8085.Google Scholar
14. Chaker, A., Mlika, A., Laribi, M. A., Romdhane, L. and Zeghoul, S., “Synthesis of a spherical parallel manipulator for a dexterous medical task,” Front. Mech. Eng. 7 (2), 150162 (2012).Google Scholar
15. Zeghloul, S. and Pamanes, J. A., “Multi criteria optimal placement of robots inconstrained environments,” Robotica 11 (1), 105110 (1993).Google Scholar
16. Zeghloul, S., “Développement d'un système de CAO-Robotique intégrant la planification de trajectoires et la synthèse de sites robotisés,” State Phd, Poitiers, 14 février 1991.Google Scholar
17. Leguay-Durand, S. and Reboulet, C., “Optimal design of a redundant spherical parallel manipulator,” Robotica 15, 399405 (1997).CrossRefGoogle Scholar
18. Ceccarelli, M., Carbone, G. and Ottaviano, E., “Multi criteria optimum design of manipulators,” Bull. Pol. Acad. Sci., Tech. Sci. 53 (1), 918 (2005).Google Scholar
19. Gao, Z., Zhang, D., Hu, X. and Ge, Y., “Design, analysis, and stiffness optimization of a three degree of freedom parallel manipulator,” Robotica 28, 349357 (2010).Google Scholar
20. Gosselin, C. and Merlet, J.-P., “The direct kinematics of planar parallel manipulators: special architectures and number of solutions,” Mech. Mach. Theory 29, 10831097 (1994).Google Scholar
21. Merlet, J.-P., “Direct kinematics of parallel manipulators,” IEEE Trans. Robot. Autom. 9 (6), 842845 (1993).CrossRefGoogle Scholar
22. Baron, L. and Angeles, J., “The direct kinematics of parallel manipulators under joint-sensor redundancy,” IEEE Trans. Robot. Autom. 16 (1), (2000).Google Scholar
23. Celaya, E., “Interval propagation for solving parallel spherical mechanisms,” In: Advances in Robot Kinematics (Lenarcic, J. and Thomas, F., eds.) (Kluwer Academic Publishers, 2002) pp. 415422.Google Scholar
24. Gosselin, C. M., Sefrioui, J. and Richard, M. J., “On the direct kinematics of spherical three-degree-of-freedom parallel manipulators of general architecture,” ASME J. Mech. Des. 116 (2), 594598 (1994).Google Scholar
25. Bai, S., Hansen, M. R. and Angeles, J., “A robust forward displacement analysis of spherical parallel robots,” Mech. Mach. Theory 44 (12), 22042216 (2009).Google Scholar
26. Saafi, H., Laribi, M. A., Zeghloul, S. and Ibrahim, M. Y., “Development of a Spherical Parallel Manipulator as a Haptic Device for a Tele-Operation System: Application to Robotic Surgery,” Proceedings of the 39th International Conference on Industrial Electronics Society, Vienna, Austria (Nov. 10–13, 2013) pp. 4095–4100.Google Scholar
27. Chaker, A., Mlika, A., Laribi, M. A., Romdhane, L. and Zeghloul, S., “Clearance and manufacturing errors' effects on the accuracy of the 3-RCC spherical parallel manipulator,” Eur. J. Mech. A 37, 8695 (Jan.–Feb. 2013).Google Scholar
28. Maciejewski, A. and Bein, C. A. K., “The singular value decomposition: Computation and applications to robotics,” Int. J. Robot. Res. 8, 6379 (1989).CrossRefGoogle Scholar