Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-21T19:59:49.078Z Has data issue: false hasContentIssue false

Position control of a wheel-based miniature magnetic robot using neuro-fuzzy network

Published online by Cambridge University Press:  20 May 2022

Mobin Salehi
Affiliation:
Nanorobotics Laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Hossein Nejat Pishkenari*
Affiliation:
Nanorobotics Laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Hassan Zohoor
Affiliation:
Department of Mechanical Engineering, Sharif University of Technology; Academician, Academy of Sciences of IR Iran, Tehran, Iran
*
*Corresponding author. E-mail: [email protected]

Abstract

Untethered small-scale robots can accomplish tasks which are not feasible by conventional macro robots. In the current research, we have designed and fabricated a miniature magnetic robot actuated by an external magnetic field. The proposed robot has two coaxial wheels and one magnetic dipole which is capable of rolling and moving on the surface by variation in the direction of magnetic field. To generate the desired magnetic field, a Helmholtz electromagnetic coil is manufactured. To steer the robot to the desired position, at first the robot dynamics is investigated, and subsequently a controller based on a neuro-fuzzy network has been designed. Finally, the proposed controller is implemented experimentally and the performance of the control system is demonstrated.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S. and Diller, E., “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103(2), 205224 (2015).CrossRefGoogle ScholarPubMed
Runciman, M., Darzi, A. and Mylonas, G. P., “Soft robotics in minimally invasive surgery,” Soft Robot. 6(4), 423443 (2019).CrossRefGoogle ScholarPubMed
Hu, W., Lum, G., Mastrangeli, M. and Sitti, M., “Small-scale soft-bodied robot with multimodal locomotion,” Cah. Rev. The. 554(7690), 8185 (2018).Google ScholarPubMed
Le, V. H., Nguyen, V. D., Lee, C., Go, G., Park, J.-O. and Park, S., “Miniaturized biopsy module using gripper tool for active locomotive capsule endoscope,” Mechatronics 44(21), 5259 (2017).CrossRefGoogle Scholar
Ciuti, G., Valdastri, P., Menciassi, A. and Dario, P., “Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures,” Robotica 28(2), 199207 (2010).CrossRefGoogle Scholar
Li, H., Go, G., Ko, S., Park, J.-O. and Park, S., “Magnetic actuated phresponsive hydrogel-based soft micro-robot for targeted drug delivery,” Smart Mater. Struct. 25(2), 027001 (2016).CrossRefGoogle Scholar
Hu, S., Hu, R., Dong, X., Wei, T., Chen, S. and Sun, D., “Translational and rotational manipulation of filamentous cells using optically driven microrobots,” Opt. Exp. 27(12), 1647516482 (2019).CrossRefGoogle ScholarPubMed
Yesin, K. and Nelson, B., “A CAD model based tracking system for visually guided microassembly,” Robotica 23(4), 409418 (2005).CrossRefGoogle Scholar
Sitti, M.. Mobile Microrobotics (MIT Press, Cambridge, MA, 2017).Google Scholar
Huang, H-W., Sakar, M. S., Petruska, A. J., Pané, S. and Nelson, B. J., “Soft micromachines with programmable motility and morphology,” Nat. Commun. 7(1), 1226312272 (2016).CrossRefGoogle ScholarPubMed
Zhang, S., Scott, E. Y., Singh, J., Chen, Y., Zhang, Y., Elsayed, M., Chamberlain, M. D., Shakiba, N., Adams, K., Yu, S., Morshead, C. M., Zandstra, P. W., Wheeler, A. R., “The optoelectronic microrobot: A versatile toolbox for micromanipulation,” Proc. Nat. Acad. Sci. 116(30), 1482314828 (2019).CrossRefGoogle ScholarPubMed
Zhang, R., Sherehiy, A., Yang, Z., Wei, D., Harnett, C. K. and Popa, D. O., “Chevbot an Untethered Microrobot Powered by Laser for Microfactory Applications,” In: International Conference on Robotics and Automation (ICRA) (2019) pp. 231236.Google Scholar
Sakar, M. S., Steager, E. B., Kim, D. H., Julius, A. A., Kim, M., Kumar, V. and Pappas, G. J., “Modeling, control and experimental characterization of microbiorobots,” Int. J. Robot. Res. 30(6), 647658 (2011).CrossRefGoogle Scholar
de Walle, A. V., Plan Sangnier, A., Abou-Hassan, A., Curcio, A., Hémadi, M., Menguy, N., Lalatonne, Y., Luciani, N. and Wilhelm, C., “Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells,” Proc. Nat. Acad. Sci. 116(10), 40444053 (2019).CrossRefGoogle Scholar
Ebrahimi, N., Bi, C., Cappelleri, D. J., Ciuti, G., Conn, A. T., Faivre, D., Habibi, N., Hošovský, A., Iacovacci, V., Khalil, I. S. M., Magdanz, V., Misra, S., Pawashe, C., Rashidifar, R., Soto-Rodriguez, P. E. D., Fekete, Z., Jafari, A., “Magnetic actuation methods in bio/soft robotics,” Adv. Funct. Mater. 31(11), 2005137 (2021).CrossRefGoogle Scholar
Salmanipour, S., Youssefi, O. and Diller, E. D., “Design of multi-degrees-robot-freedom microrobots driven by homogeneous Quasi-Static magnetic fields,” IEEE Trans. Robot. 37(1), 246256 (2020).CrossRefGoogle Scholar
Go, G., Nguyen, V. D., Jin, Z., Park, J.-O. and Park, S., “A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents,” Int. J. Cont. Automat. Syst. 16(3), 13411354 (2018).CrossRefGoogle Scholar
Breger, J. C., Yoon, C., Xiao, R., Kwag, H. R., Wang, M. O., Fisher, J. P., Nguyen, T. D. and Gracias, D. H., “Self-folding thermo-magnetically responsive soft microgrippers,” ACS Appl. Mater. Inter. 7(5), 33983405 (2015).CrossRefGoogle ScholarPubMed
Floyd, S., Pawashe, C. and Sitti, M., “An Untethered Magnetically Actuated Micro-robot Capable of Motion on Arbitrary Surfaces,” In: IEEE International Conference on Robotics and Automation (2008) pp. 419424.Google Scholar
Hou, M. T., Shen, H.-M., Jiang, G.-L., Lu, C.-N., Hsu, I.-J. and Yeh, J. A., “A rolling locomotion method for untethered magnetic microrobots,” Appl. Phys. Lett. 96(2), 024102 (2010).CrossRefGoogle Scholar
Tung, H., Peyer, K., Sargent, D. and Nelson, B., “Noncontact manipulation using a transversely magnetized rolling robot,” Appl. Phys. Lett. 103(11), 114101114101 (2013).CrossRefGoogle Scholar
Pieters, R., Tung, H., Charreyron, S., Sargent, D. and Nelson, B., “Rodbot: A Rolling Microrobot for Micromanipulation,” In: Proceedings – IEEE International Conference on Robotics and Automation (vol. 2015, 2015) pp. 40424047.CrossRefGoogle Scholar
Tasci, O., Herson, P., Neeves, K. and Marr, D., “Surface-enabled propulsion and control of colloidal microwheels,” Nat. Commun. 7(1), 447 (2016).CrossRefGoogle ScholarPubMed
Disharoon, D., Neeves, K. B. and Marr, M.D.W., “AC/DC magnetic fields for enhanced translation of colloidal microwheels,” Langmuir 35(9), 34553460 (2019).CrossRefGoogle ScholarPubMed
Jing, W., Pagano, N. and Cappelleri, D. J., “A Tumbling Magnetic Microrobot with Flexible Operating Modes,” In: IEEE International Conference on Robotics and Automation (2013) pp. 55145519.Google Scholar
Jing, W., Pagano, N. and Cappelleri, D. J., “A novel micro-scale magnetic tumbling microrobot,” J. Micro-Bio Robot. 8(1), 112 (2013).CrossRefGoogle Scholar
Bi, C., Guix, M., Johnson, B., Jing, W. and Cappelleri, D., “Designof microscale magnetic tumbling robots for locomotion in multiple environments and complex terrains,” Micromachines 9(2), 68 (2018).CrossRefGoogle Scholar
Jiang, G.-L., Guu, Y.-H., Lu, C.-N., Li, P.-K., Shen, H.-M., Lee, L.-S., Yeh, J. A. and Hou, M. T.-K., “Development of rolling magnetic microrobots,” J. Micromech. Microeng. 20(8), 085042 (2010).CrossRefGoogle Scholar
Zhang, J. and Diller, E., “Tetherless mobile micrograsping using a magnetic elastic composite material,” Smart Mater. Struct. 25(11), 11LT03 (2016).CrossRefGoogle Scholar
Zhang, J., Onaizah, O., Middleton, K., You, L. and Diller, E., “Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place,” IEEE Robot. Automat. Lett. 2(2), 835840 (2017).CrossRefGoogle Scholar
Ahmed, R., Ilami, M., Bant, J., Beigzadeh, B. and Marvi, H., “A shapeshifting ferrofluidic robot,Soft Robot. 8(6), 687698 (2021).CrossRefGoogle Scholar
Byun, D., Choi, J., Cha, K., oh Park, J. and Park, S., “Swimming microrobot actuated by two pairs of helmholtz coils system,” Mechatronics 21(1), 357364 (2011).CrossRefGoogle Scholar
Yang, L., Wang, Q., Vong, C. and Zhang, L., “A miniature flexible-link magnetic swimming robot with two vibration modes: Design, modeling and characterization,” IEEE Robot. Automat. Lett. 2(4), 20242031 (2017).CrossRefGoogle Scholar
Lee, H. J. and Jeon, S. M., “An intravascular helical magnetic millirobot with a gripper mechanism performing object delivery and collecting motions actuated by precession rotating magnetic fields,” AIP Adv. 11(2), 025236 (2021).CrossRefGoogle Scholar
Pham, L. N., Steiner, J. A., Leang, K. K. and Abbott, J. J., “Soft endoluminal robots propelled by rotating magnetic dipole fields,” IEEE Trans. Med. Robot. Bion. 2(4), 598607 (2020).CrossRefGoogle Scholar
Chaluvadi, B., Stewart, K. M., Sperry, A. J., Fu, H. C. and Abbott, J. J., “Kinematic model of a magnetic-Microrobot swarm in a rotating magnetic dipole field,” IEEE Robot. Automat. Lett. 5(2), 24192426 (2020).CrossRefGoogle Scholar
Li, J., et al., “Biped walking of magnetic microrobot in Oscillating field for indirect manipulation of Non-Magnetic objects,” IEEE Trans. Nanotechnol. 19, 2124 (2020).CrossRefGoogle Scholar
Khatib, E. A., Bhattacharjee, A., Razzaghi, P., Rogowski, L. W., Kim, M. J. and Hurmuzlu, Y., “Magnetically actuated simple millirobots for complex navigation and modular assembly,” IEEE Robot. Automat. Lett. 5(2), 29582965 (2020).CrossRefGoogle Scholar
Jang, B., Nam, J., Lee, W. and Jang, G., “A crawling magnetic robot actuated and steered via oscillatory rotating external magnetic fields in tubular environments,” IEEE/ASME Trans. Mechatron. 22(3), 14651472 (2017).CrossRefGoogle Scholar
Kim, S. H., Hashi, S. and Ishiyama, K., “Magnetic actuation based Snake-Like mechanism and locomotion driven by rotating magnetic field,” IEEE Trans. Magn. 47(10), 32443247 (2011).CrossRefGoogle Scholar
Peyer, K. E., Zhang, L. and Nelson, B. J., “Bio-inspired magnetic swimming microrobots for biomedical applications,” Nanoscale 5(4), 12591272 (2012).CrossRefGoogle Scholar
Yang, Z. and Zhang, L., “Magnetic actuation systems for miniature robots: A review,” Adv. Intell. Syst 2(9), 2000082 (2020).CrossRefGoogle Scholar
Lin, H. and Lee, C., “Neuro-fuzzy-based skill learning for robots,” Robotica 30(6), 10131027 (2012).CrossRefGoogle Scholar
Lucas, C., Shahmirzadi, D. and Sheikholeslami, N., “Introducing Belbic: Brain emotional learning based intelligent controller”, Intell. Autom. Soft Comput10(1), 1121 (2004).CrossRefGoogle Scholar