Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T17:28:55.611Z Has data issue: false hasContentIssue false

PID control of robot manipulators equipped with brushless DC motors

Published online by Cambridge University Press:  01 March 2009

V. M. Hernández-Guzmán*
Affiliation:
Universidad Autónoma de Querétaro, Facultad de Ingeniería, Apartado Postal 3-24, C.P. 76150, Querétaro, Qro., México
V. Santibáñez
Affiliation:
Instituto Tecnológico de la Laguna, División de Estudios de Posgrado e Investigación, Apartado Postal 49 Adm. 1, C.P. 27001, Torreón, Coahuila, México.
R. Campa
Affiliation:
Instituto Tecnológico de la Laguna, División de Estudios de Posgrado e Investigación, Apartado Postal 49 Adm. 1, C.P. 27001, Torreón, Coahuila, México.
*
*Corresponding author. E-mail: [email protected]

Summary

This paper is concerned with PID control of rigid robots equipped with brushless DC (BLDC) motors when the electric dynamics of these actuators is taken into account. We show that an adaptive PID controller yields global stability and global convergence to the desired link positions. Moreover, we also show that virtually the PID part of the controller suffices to achieve the reported global results. We present a theoretical justification for the torque control strategy, commonly used in practice to control BLDC motors. Our controller does not require the exact knowledge of neither robot nor actuator parameters.

Type
Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hemati, N., Thorp, J. and Leu, M. C., “Robust nonlinear control of brushless DC motors for direct-drive robotic applications,” IEEE Trans. Ind. Electron. 37 (6), 460468 (1990).CrossRefGoogle Scholar
2.Hu, J., Dawson, D. M., Burg, T. and Vedagarbha, P., “An Adaptive Tracking Controller for a Brushless DC Motor With Reduced Overparametrization Effects,” Proc. 33rd Conference on Decision and Control, Lake Buena Vista, FL (1994) pp. 1850–1855.Google Scholar
3.Bridges, M. M. and Dawson, D. M., “Adaptive Control of Rigid-Link Electrically-Driven Robots Actuated With Brushless DC Motors,” Proc. 33rd Conference on Decision and Control, Lake Buena Vista, FL (1994) pp. 1284–1289.Google Scholar
4.Melkote, H. and Khorrami, F., “Nonlinear adaptive control of direct-drive brushless DC motors and applications to robotic manipulators,” IEEE/ASME Trans. Mechatron. 4 (1), 7181 (1999).CrossRefGoogle Scholar
5.Tarn, T.-J., Bejczy, A. K., Yun, X., Li, X. and Li, Z., “Effect of motor dynamics on nonlinear feedback robot arm control,” IEEE Trans. Rob. Automat. 7 (1), 114122 (1991).CrossRefGoogle Scholar
6.Eppinger, S. and Seering, W., “Introduction to dynamic models for robot force control,” IEEE Control Syst. Mag. 7 (2), 4852 (1987).CrossRefGoogle Scholar
7.Ailon, A., Lozano, R. and Gil', M. I., “Point-to-point regulation of a robot with flexible joints including electrical effects of actuator dynamics,” IEEE Trans. Automat. Control 42 (4), 559564 (1997).CrossRefGoogle Scholar
8.Ailon, A., Lozano, R. and Gil', M. I., “Iterative regulation of an electrically driven flexible-joint robot with model uncertainty,” IEEE Trans. Rob. Automat. 16 (6), 863870 (2000).CrossRefGoogle Scholar
9.Burg, T., Dawson, D., Hu, J. and De Queiroz, M., “An adaptive partial state-feedback controller for RLED robot manipulators,” IEEE Trans. Automat. Control 41 (7), 10241030 (1996).CrossRefGoogle Scholar
10.Colbaugh, R. and Glass, K., “Adaptive Regulation of Rigid-Link Electrically-Driven Manipulators,” Proc. IEEE International Conference on Robotics and Automation, Nagoya, Japan, (1995) pp. 293–299.Google Scholar
11.Mahmoud, M. S., “Robust control of robot arms including motor dynamics,” Int. J. Control 58, 853873 (1993).CrossRefGoogle Scholar
12.Oya, M., Su, C.-Y. and Kobayashi, T., “State observer-based robust control scheme for electrically driven robot manipulators,” IEEE Trans. Rob. 20 (4), 796804 (2004).CrossRefGoogle Scholar
13.Ortega, R., Loría, A., Nicklasson, P. and Sira-Ramírez, H., Passivity-based control of Euler-Lagrange Systems (Springer, London, 1998).CrossRefGoogle Scholar
14.Su, Y., Muller, P. C. and Zheng, C., “A Global Asymptotic Stable Output Feedback PID Regulator for Robot Manipulators,” Proc. IEEE International Conference on Robotics and Automation, Roma, Italy (2007) pp.4484–4489.Google Scholar
15.Campa, R., Torres, E., Santibáñez, V. and Vargas, R., “Electromechanical Dynamics Characterization of Brushless Direct-Drive Servomotor,” Proc. VII Mexican Congress on Robotics, Mexico city, Mexico (2005) pp. 2728.Google Scholar
16.Parker Automation, “Compumotor's Virtual Classroom,” Position Systems and Controls, Training and Product Catalog, CD-ROM (1998).Google Scholar
17.Dawson, D. M., Hu, J. and Burg, T. C., Nonlinear control of electric machinery (Marcel Dekker, New York, 1998).Google Scholar
18.Krause, P. C., Wasynczuk, O. and Sudhoff, S. D., Analysis of electric machinery and drive systems (IEEE Press, New York, 2002).CrossRefGoogle Scholar
19.Koditschek, D., “Natural motion for robot arms,” Proc. IEEE Conference on Decision and Control, Vegas, NV (1984) pp. 733–735.Google Scholar
20.Kelly, R., “A tuning procedure for stable PID control of robot manipulators,” Robotica 13, 141148 (1995).CrossRefGoogle Scholar
21.Kelly, R., Santibáñez, V. and Loría, A., Control of Robot Manipulators in Joint Space (Springer, London, 2005).Google Scholar
22.Tomei, P., “Adaptive PD controller for robot manipulators,” IEEE Trans. Rob. Automat. 7 (4), 565570 (1991).CrossRefGoogle Scholar
23.Kelly, R., “Global positioning for robot manipulators via PD control plus a class of nonlinear integral actions,” IEEE Trans. Automat. Control 43 (7), 934938 (1998).CrossRefGoogle Scholar
24.Arimoto, S., Naniwa, T., Parra-Vega, V. and Whitcomb, L., “A quasi-natural potential and its role in design of hyper-stable PID servo-loop for robotic systems,” Proc. CAI Pacific Symp. Control and Industrial Automation Applications, Hong Kong, (1994) pp.110–117.Google Scholar
25.Campa, R., Kelly, R. and Santibáñez, V., “Windows-based real-time control of direct-drive mechanisms: Platform description and experiments,” Mechatronics, 14, 10211036 (2004).CrossRefGoogle Scholar