Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T00:04:13.080Z Has data issue: false hasContentIssue false

Performance evaluation of spherical parallel platforms for humanoid robots

Published online by Cambridge University Press:  01 May 2006

Roque J. Saltaren
Affiliation:
DISAM, ETSII, Universidad Politecnica de Madrid, Madrid 28006Spain.
Jose M. Sabater
Affiliation:
Departamento de Ingenieria de Sistemas Industriales Universidad Miguel Hernandez, Elche (Alicante) 03202Spain.
Eugenio Yime
Affiliation:
DISAM, ETSII, Universidad Politecnica de Madrid, Madrid 28006Spain.
Jose M. Azorin
Affiliation:
Departamento de Ingenieria de Sistemas Industriales Universidad Miguel Hernandez, Elche (Alicante) 03202Spain.
Rafael Aracil
Affiliation:
DISAM, ETSII, Universidad Politecnica de Madrid, Madrid 28006Spain.
Nicolas Garcia
Affiliation:
Departamento de Ingenieria de Sistemas Industriales Universidad Miguel Hernandez, Elche (Alicante) 03202Spain.

Summary

This paper presents a simple methodology for the quantitative and qualitative analysis of the performance of spherical parallel platforms. The quaternion formulation is used to represent the possible rotations, showing the workspace as a three-dimensional (3-D) solid object. The singularities of the platform intersect graphically with its workspace, allowing a graphical study of the mechanism kinematics. The performance criterion considered here has been the local dexterity of the manipulator. This methodology has been used to study and analyze three known orientation parallel platforms: 3-RRR, 3-UPU-wrist, and 2-UPS-1-RU. The objective of this study is to analyze the ability of these platforms to be utilized as mechanisms for the neck and shoulders of humanoid robots. Finally, the forces on actuators in some typical motions for neck and shoulder are plotted.

Type
Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Albers, A., Brudniok, S. and Burger, W., “The mechanics of a humanoid”, Proceedings of Humanoids 2003, Karlsruhe, Germany.Google Scholar
2.Brooks, A., Breazeal, C., Marjanovic, M., Scassellati, B. and Williamson, M. M., “The cog project: Building a humanoid robot,” Lecture Notes in Artificial Intelligence, Computation for Metaphors, Analogy and Agents 1562 (1) (1998).Google Scholar
3.Cheng, H. H., “Real-time manipulation of a hybrid serial-and-parallel driven redundant industrial manipulator”, J. Dyn. Syst. Meas. Control 116, 687701 (1994).CrossRefGoogle Scholar
4.Friberg, O., “A set of parameters for finite rotations and translations”, Comput. Methods Appl. Mech. Engi. 66, 163171 (1988).CrossRefGoogle Scholar
5.Gosselin, C. and Angeles, J., “A global performance index for the kinematic optimization of robotic manipulator”, Trans. ASME J. Mech. Des. 113, 220226 (1991).CrossRefGoogle Scholar
6.Gosselin, C., St Pierre, E. and Gagné, M., “On the development of the agile eye: Mechanical design, control issues and experimentation”, IEEE Robot. Automat. Mag. 3, 2937 (1996).CrossRefGoogle Scholar
7.Di Gregorio, R., “Kinematics of the 3-upu wrist”, Mech. Mach. Theory 38 (1), 253263 (2003).CrossRefGoogle Scholar
8.Di Gregorio, R., “Statics and singularity loci of the 3-upu wrist”, IEEE Trans. Robot. 20 (4), 630635 (2004).CrossRefGoogle Scholar
10.Ivancevic, V. and Ivancevic, T., “Human-like biomechanics: A unified mathematical approach to human biomechanics and humanoids robotics”, Springer Series: Microprocessor-Based and Intelligent Systems Engineering, vol. 28, 2005.Google Scholar
11.Kim, H., Cork, G., Burton, G., Murphy-Chutorian, E. and Triesch, J., “Design of an anthropomorphic robot head for studying autonomous development and learning”, Proceeding of the IEEE 2004 International Conference on Robotics and Automation (ICRA 2004), New Orleans, LA (April–May 2004).Google Scholar
12.Merlet, J. P., Les robots paralléles (Hermes, 1997).Google Scholar
13.Okada, M., Nakamura, Y. and Hoshino, S., “Development of the cybernetic shoulder–a three DOF mechanism that imitates biological shoulder-motion”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'99) pp. 543–548 (1999).Google Scholar
14.Murray, R. M., Li, Z. and Sastry, S., A Mathematical Introduction to Robotic Manipulation: (CRC Press, Boca Raton, FL, 1994).Google Scholar
15.Porcher, L., Anatomic Modeling of Human Bodies Using Physically-Based Muscle Simulation Ph.D. Thesis (Ecole Polytechnique Federale de Lausanne, 1998).Google Scholar
16.Pusey, J., Fattah, A., Agrawal, S. and Messina, E., “Design and workspace of a 6-6 cable-suspended parallel robot”, Mech. Mach. Theory 39, 761778 (2004).CrossRefGoogle Scholar
17.Salisbury, J. K. and Angeles, J., “Articulated hands: Force control and kinematic issues”, Int. J. Robot. Res.} 1 (1), 417 (1982).CrossRefGoogle Scholar
18.Shibata, T., Vijayakumar, S., Conradt, J., and Schaal, S., “Humanoid oculomotor control based on concepts of computational neuroscience”, Proceedings of the 2001 IEEE-RAS International Conference on Humanoid Robots, Japan (2001).Google Scholar
19.Sony, “Dream robot qrio,” http://www.sony.net/qrioGoogle Scholar
20.Suzuki, K. and Hashimoto, S., “Harmonized human–machine environment for humanoid robot,” Proceedings of the 2001 IEEE-RAS International Conference on Humanoid Robots, Japan (2001).Google Scholar
21.Tsai, L. W., “Kinematics of a three-dof platform with three extensible limbs,” in: Recent Advances in Robot Kinematics, Advances in Robot Kinematics (ARK) (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), pp. 401410.CrossRefGoogle Scholar
22.Tsai, L. W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators (Wiley, New York, 1999).Google Scholar
23.Horst, M. J. van der, Human Head Neck Response in Frontal, Lateral and Rear End Impact Loading: Modelling and Validation Ph.D. Thesis (Eindhoven: Technische Universiteit Eindhoven, 2002).Google Scholar
24.Wagner, D., Birt, J. A. et al. , Human Factors Design Guide (hfdg). Internal Report (FAA William J. Hughes Technical Center, Atlanta City, NJ, 1996).Google Scholar
25.Wyeth, G., Kee, D., Wagstaff, M., Brewer, N., Stirzaker, J., Cartwright, T. and Bebel, B., “Design of an autonomous humanoid robot”, Proceedings of the Australian Conference on Robotics and Automation (ACRA 2001), Melbourne, Australia (August–September 2001).Google Scholar
26.Yang, G., Ho, E. H. L., Lin, W. and Chen, I.-M., “A differential geometry approach for the workspace analysis of spherical parallel manipulators,” Proccedings of the 11th World Congress in Mechanism and Machine Science} (2003) pp. 1–6.Google Scholar