Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T14:49:48.213Z Has data issue: false hasContentIssue false

PD control with feedforward compensation for rigid robots actuated by brushless DC motors

Published online by Cambridge University Press:  29 July 2010

R. V. Carrillo-Serrano
Affiliation:
Universidad Autónoma de Querétaro, Facultad de Ingeniería, Apartado Postal 3-24. C.P. 76150, Querétaro, Qro., México E-mail: [email protected]
V. M. Hernández-Guzmán*
Affiliation:
Universidad Autónoma de Querétaro, Facultad de Ingeniería, Apartado Postal 3-24. C.P. 76150, Querétaro, Qro., México E-mail: [email protected]
V. Santibáñez
Affiliation:
Instituto Tecnológico de la Laguna, División de Estudios de Posgrado e Investigación, Apartado Postal 49 Adm. 1. C.P. 27001, Torreón, Coahuila, México E-mail: [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This work is concerned with trajectory tracking of robots when the electrical dynamics of the brushless DC motor actuators is considered. It is shown that proportional-derivative (PD) control with feedforward compensation, plus some additional terms to cope with the electrical dynamics, ensures state boundedness. Furthermore, tracking error converges to zero from arbitrarily large initial conditions if controller gains are correctly chosen. Under mild assumptions, this controller reduces to the well-known PD control with feedforward compensation when implemented according to torque control, a successful industrial practice. Thus, it is explained, for the first time, why this strategy works well in applications.

Type
Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Santibáñez, V. and Kelly, R., “PD control with feedforward compensation for robot manipulators: Analysis and experimentation,” Robotica 19 (1), 1119 (2001).Google Scholar
2.Kelly, R., Santibáñez, V. and Loria, A., Control of Robot Manipulators in Joint Space (Springer, London, 2005).Google Scholar
3.Wen, J. T. and Bayard, D. S., “New class of control laws for robotic manipulators. Part 1: Non-adaptive case,” Int. J. Control 47 (5), 13611385 (1988).Google Scholar
4.Wen, J. T., “A unified perspective on robot control: The energy Lyapunov function approach,” Int. J. Adapt. Control Signal Process. 4 (6), 487500 (1990).CrossRefGoogle Scholar
5.Kelly, R. and Salgado, R., “PD Control with computed feedforward of robot manipulators: A design procedure,” IEEE Trans. Robot. Autom. 10 (4), 566571 (1994).Google Scholar
6.Eppinger, S. and Seering, W., “Introduction to dynamic models for robot force control,” IEEE Control Syst. Mag. 7 (2), 4852 (1987).CrossRefGoogle Scholar
7.Tarn, T.-J., Bejczy, A. K., Yun, X. and Li, Z., “Effect of motor dynamics on nonlinear feedback robot arm control,” IEEE Trans. Robot. Autom. 7 (1), 114122 (1991).CrossRefGoogle Scholar
8.Burg, T., Dawson, D., Hu, J. and De Queiroz, M., “An adaptive partial state-feedback controller for RLED robot manipulators,” IEEE Trans. Autom. Control 41 (7), 10241030 (1996).CrossRefGoogle Scholar
9.Ailon, A., Lozano, R. and Gil', M., “Iterative regulation of an electrically driven flexible-joint robot with model uncertainty,” IEEE Trans. Robot. Autom. 16 (6), 863870 (2000).CrossRefGoogle Scholar
10.Hernández-Guzmán, V. M., Santibáñez, V. and Herrera, G., “Control of rigid robots equipped with brushed DC-motors as actuators,” Int. J. Control, Autom. and Syst. 5 (6), 718724 (2007).Google Scholar
11.Hemati, N., Thorp, J. S. and Leu, M. C., “Robust nonlinear control of brushless DC motors for direct-drive robotic applications,” IEEE Trans. Ind. Electron. 37 (6), 460468 (1990).Google Scholar
12.Bridges, M. M. and Dawson, D. M., “Adaptive Control of Rigid-Link Electrically-Driven Robots Actuated with Brushless DC Motors,” Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL (1994) pp. 12841289.Google Scholar
13.Hu, J., Dawson, D. M., Burg, T. and Vedagarbha, P., “An Adaptive Tracking Controller for a Brushless DC Motor with Reduced Overparameterization Effects,” Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL (1994) pp. 18501855.Google Scholar
14.Melkote, H. and Khorrami, F., “Nonlinear adaptive control of direct-drive brushless DC motors and applications to robotic manipulators,” IEEE/ASME Trans. Mechatron. 4 (1), 7181 (1999).Google Scholar
15.Campa, R., Torres, E., Santibáñez, V. and Vargas, R., “Electromechanical Dynamics Characterization of a Brushless Direct-Drive Servomotor,” Proceedings of the 7th Mexican Congress on Robotics, Mexico City, Mexico (2005) pp. 2728.Google Scholar
16.Ortega, R., Loria, A., Nicklasson, P. and Sira-Ramírez, H., Passivity-Based Control of Euler-Lagrange Systems (Springer, London, 1998).CrossRefGoogle Scholar
17.Hernández-Guzmán, V. M., Santibáñez, V. and Campa, R., “PID control of robot manipulators equipped with brushless DC motors,” Robotica 27 (2), 225233 (2009).Google Scholar
18.Hernández-Guzmán, V. M., Santibáñez, V. and Zavala-Río, A., “A saturated PD controller for robots equipped with brushless DC-motors,” Robotica 28 (3), 405411 (2010).CrossRefGoogle Scholar
19.Liégois, A., Fournier, A. and Aldon, M. J., “Model Reference Control of High-Velocity Industrial Robots,” Proceedings of the Joint Automatic Control Conference, San Francisco, CA., (1980). Session TP10-D.Google Scholar
20.Parker Automation, “Compumotor's Virtual Classroom,” Position System and Controls, Training and Product Catalog, CDROM (1998).Google Scholar
21.Dawson, D. M., Hu, J. and Burg, T. C., Nonlinear Control of Electric Machinery (Marcel Dekker, New York, 1998).Google Scholar
22.Krause, P. C., Wasynczuk, O. and Sudhoff, S. D., Analysis of Electric Machinery and Drive Systems (IEEE Press, New York, 2002).CrossRefGoogle Scholar
23.Khalil, H. K., Nonlinear Systems, 2nd ed. (Prentice-Hall, Upper Saddle River, NJ, 1996).Google Scholar
24.Horn, R. A. and Johnson, C. R., Matrix Analysis (Cambridge University Press, Cambridge, 1993).Google Scholar
25.Sastry, S. and Bodson, M., Adaptive Control: Stability, Convergence and Robustness (Prentice-Hall, Englewood Cliffs, NJ, 1989).Google Scholar
26.Campa, R., Kelly, R. and Santibáñez, V., “Windows-based real-time control of direct-drive mechanisms: Platform description and experiments,” Mechatronics 14 (9), 10211036 (2004).Google Scholar