Article contents
Parallel computation of configuration space
Published online by Cambridge University Press: 09 March 2009
Summary
Many motion planning methods use Configuration Space to represent a robot manipulator's range of motion and the obstacles which exist in its environment. The Cartesian to Configuration Space mapping is computationally intensive and this paper describes how the execution time can be decreased by using parallel processing. The natural tree structure of the algorithm is exploited to partition the computation into parallel tasks. An implementation programmed in the occam2 parallel computer language running on a network of INMOS transputers is described. The benefits of dynamically scheduling the tasks onto the processors are explained and verified by means of measured execution times on various processor network topologies. It is concluded that excellent speed-up and efficiency can be achieved provided that proper account is taken of the variable task lengths in the computation.
- Type
- Article
- Information
- Copyright
- Copyright © Cambridge University Press 1996
References
- 1
- Cited by