Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-21T23:34:15.586Z Has data issue: false hasContentIssue false

Output Feedback Hybrid Force/Motion Control for Robotic Manipulators Interacting with Unknown Rigid Surfaces

Published online by Cambridge University Press:  22 April 2019

Alejandro Gutiérrez–Giles*
Affiliation:
Department of Electrical Engineering and Information Technology, CREATE Consortium and Prisma Laboratory, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
Marco Arteaga–Pérez
Affiliation:
Departamento de Control y Robótica, DIE, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico. E-mail: [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

The problem of hybrid force and motion control over unknown rigid surfaces when only joint position measurements are available is considered. To overcome this problem, an extended state high-gain observer is designed to simultaneously estimate the contact force and joint velocities. These estimated signals are in turn employed to design a local estimator of the unknown surface gradient. This gradient is utilized to decompose the task space into two orthogonal subspaces: one for force tracking and the other one for motion control. A simple position Proportional Integral Derivative (PID) and force Proportional Integral (PI) controllers are proposed to track the desired signals. Finally, a mathematical analysis of the closed-loop dynamics is carried out, guaranteeing uniform ultimate boundedness of the position and force tracking errors and of the surface gradient estimation error. A numerical simulation is employed to validate the approach in an ideal scenario, while experiments are carried out to test the proposed strategy when uncertainties and unmodeled dynamics are present.

Type
Articles
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siciliano, B. and Villani, L., Robot Force Control (Kluwer Academic, New York, USA, 1999).10.1007/978-1-4615-4431-9CrossRefGoogle Scholar
Zollo, L., Siciliano, B., Laschi, C., Teti, G. and Dario, P., “An experimental study on compliance control for a redundant personal robot arm,” Robot. Auton. Syst. 44(2), 101129 (2003).10.1016/S0921-8890(03)00042-3CrossRefGoogle Scholar
Zollo, L., Siciliano, B., de Luca, A., Guglielmelli, E. and Dario, P.. “Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments.” J. Dyn. Syst. Meas. Control. 127(3), 321328 (2005).10.1115/1.1978911CrossRefGoogle Scholar
Hanafusa, T. and Hunang, Q., “Control of position, attitude, force and moment of 6-dof manipulator by impedance control.” Proceedings of the 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE, Singapore (2018) pp. 274279.Google Scholar
Raibert, M. H. and Craig, J. J., “Hybrid position/force control of manipulators.” J. Dyn. Syst. Meas. Control. 103(2), 126133 (1981).10.1115/1.3139652CrossRefGoogle Scholar
Chiaverini, S. and Sciavicco, L., “The parallel approach to force/position control of robotic manipulators,” IEEE Trans. Robot. Automat. 9(4), 361373 (1993).10.1109/70.246048CrossRefGoogle Scholar
Muscolo, G. G., Hashimoto, K., Takanishi, A. and Dario, P., “A comparison between two force-position controllers with gravity compensation simulated on a humanoid arm,” J. Robot. 2013 (2013).Google Scholar
Cheah, C. C., Hou, S. P., Zhao, Y. and Slotine, J.-J. E., “Adaptive vision and force tracking control for robots with constraint uncertainity,” IEEE/ASME Trans. Mechatron. 15(3), 389397 (2010).10.1109/TMECH.2009.2027115CrossRefGoogle Scholar
Dean-León, E. C., Parra-Vega, V. and Espinosa-Romero, A., “Visual servoing for constrained planar robots subject to complex friction,” IEEE/ASME Trans. Mechatron. 11(4), 389400 (2006).10.1109/TMECH.2006.878547CrossRefGoogle Scholar
Leite, A. C., Lizarralde, F. and Hsu, L.. “Hybrid adaptive vision/force control for robot manipulators interacting with unknown surfaces,” Int. J. Robot. Res. 28(7), 911926 (2009).10.1177/0278364909101932CrossRefGoogle Scholar
Lippiello, V., Siciliano, B. and Villani, L., “A position-based visual impedance control for robot manipulators.” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, Rome, Italy (2007) pp. 20682073.Google Scholar
Yin, Y. H., Xu, Y., Jiang, Z. H. and Wang, Q. R., “Tracking and understanding unknown surface with high speed by force sensing and control for robot.” IEEE Sensors J. 12(9), 29102916 (2012).10.1109/JSEN.2012.2205098CrossRefGoogle Scholar
Wang, D., Soh, Y. C., Ho, Y. K. and Müller, P. C., “Global stabilization for constrained robot motions with constraint uncertainties,” Robotica. 16(2), 171179 (1998).10.1017/S0263574798000502CrossRefGoogle Scholar
Jamisola, R. S., Oetomo, D. N., Ang, M. H., Khatib, O., Lim, T. M. and Lim, S. Y.. “Compliant motion using a mobile manipulator: an operational space formulation approach to aircraft canopy polishing”, Adv. Robot. 19(5), 613634 (2005).10.1163/156855305323383820CrossRefGoogle Scholar
Jafari, A., Monfaredi, R., Rezaei, M., Talebi, A. and Ghidary, S. S., “Sliding mode hybrid impedance control of robot manipulators interacting with unknown environments using VSMRC method,” In: Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, USA American Society of Mechanical Engineers (2012) pp. 10711081.Google Scholar
Cheah, C. C., Kawamura, S. and Arimoto, S.. “Stability of hybrid position and force control for robotic manipulator with kinematics and dynamics uncertainties,” Automatica. 39, 847855 (2003).10.1016/S0005-1098(03)00002-5CrossRefGoogle Scholar
Chiu, C.-S., Lian, K.-Y. and Wu, T.-C.. “Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators,” Automatica. 40(12), 21112119 (2004).Google Scholar
Karayiannidis, Y. and Doulgeri, Z., “Adaptive control of robot contact tasks with on-line learning of planar surfaces,” Automatica. 45(10), 23742382 (2009).10.1016/j.automatica.2009.06.023CrossRefGoogle Scholar
Karayiannidis, Y. and Doulgeri, Z., “Robot contact tasks in the presence of control target distortions,” Robot. Auton. Syst. 58(5), 596606 (2010).10.1016/j.robot.2009.12.004CrossRefGoogle Scholar
Namvar, M. and Aghili, F., “Adaptive force-motion control of coordinated robots interacting with geometrically unknown environments,” IEEE Trans. Robot. 21(4), 678694 (2005).10.1109/TRO.2004.842346CrossRefGoogle Scholar
Pliego-Jiménez, J. and Arteaga-Pérez, M. A., “Adaptive position/force control for robot manipulators in contact with a rigid surface with uncertain parameters,” Eur. J. Control. 22, 112 (2015).10.1016/j.ejcon.2015.01.003CrossRefGoogle Scholar
Wang, D. and McClamroch, H., “Stability analysis of the equilibrium of a constrained mechanical system”, Int. J. Control. 60(5), 733746 (1994).10.1080/00207179408921492CrossRefGoogle Scholar
Doulgeri, Z. and Karayiannidis, Y., “Force/position regulation for a robot in compliant contact using adaptive surface slope identification,” IEEE Trans. Automat. Control. 53(9), 21162122 (2008).10.1109/TAC.2008.930183CrossRefGoogle Scholar
Chan, L., Naghdy, F. and Stirling, D., “Extended active observer for force estimation and disturbance rejection of robotic manipulators,” Robot. Auton. Syst. 61(12), 12771287 (2013).10.1016/j.robot.2013.09.003CrossRefGoogle Scholar
Daly, J. M. and Wang, D. W. L., “Time-delayed output feedback bilateral teleoperation with force estimation for n–dof nonlinear manipulators,” IEEE Trans. Control Syst. Technol. 22(1), 299306 (2014).10.1109/TCST.2013.2242329CrossRefGoogle Scholar
Hacksel, P. J. and Salcudean, S. E., “Estimation of environment forces and rigid-body velocities using observers,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 2, San Diego, CA (May 1994) pp. 931936.Google Scholar
Martínez-Rosas, J. C., Arteaga-Pérez, M. A. and Castillo-Sánchez, A., “Decentralized control of cooperative robots without velocity-force measurements,” Automatica 42, 329336 (2006).10.1016/j.automatica.2005.10.007CrossRefGoogle Scholar
Arteaga-Pérez, M. A., Rivera-Duenas, J. C. and Gutiérrez-Giles, A., “Velocity and force observers for the control of robot manipulators,” J. Dyn. Syst. Meas. Control. 135(6), 064502 (2013).10.1115/1.4024995CrossRefGoogle Scholar
Gutiérrez-Giles, A. and Arteaga-Pérez, M. A., “GPI based velocity/force observer design for robot manipulators,” ISA Trans. 53(4), 929938 (2014).10.1016/j.isatra.2014.03.002CrossRefGoogle ScholarPubMed
De Luca, A. and Mattone, R., “Sensorless robot collision detection and hybrid force/motion control,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, Barcelona, Spain (2005) pp. 9991004.Google Scholar
Sira-Ramírez, H., Ramírez-Neria, M. and Rodríguez-Ángeles, A., “On the linear control of nonlinear mechanical systems,” Proceedings of the 49th IEEE Conference on Decision and Control, IEEE, Atlanta, GA, USA (December 1517, 2010).Google Scholar
Parra-Vega, V., Rodríguez-Angeles, A., Arimoto, S. and Hirzinger, G., “High precision constrained grasping with cooperative adaptive handcontrol,” J. Intell. & Robot. Syst. 32, 235254 (2001). 10.1023/A:1013987209547.10.1023/A:1013987209547CrossRefGoogle Scholar
Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G., Robotics: Modelling, Planning and Control (Springer-Verlag, London, UK, 2009).10.1007/978-1-84628-642-1CrossRefGoogle Scholar
Rivera-Dueñas, J. C. and Arteaga-Pérez, M. A., “Robot force control without dynamic model: Theory and experiments,” Robotica 31, 149171 (2013).10.1017/S026357471200015XCrossRefGoogle Scholar
Wahrburg, A., Morara, E., Cesari, G., Matthias, B. and Ding, H., “Cartesian contact force estimation for robotic manipulators using Kalman filters and the generalized momentum,” Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), IEEE, Gothenburg, Sweden (2015) pp. 12301235.Google Scholar
Lau, J. G. and Arteaga, M. A., “Dynamic model and simulation of cooperative robots: A case study,” Robotica 23, 615624 (2005).Google Scholar
Murray, R. M., Li, Z. and Sastry, S. S., A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, FL, 1994).Google Scholar
Arteaga-Pérez, M. A. and Gutiérrez-Giles, A., “On the GPI approach with unknown inertia matrix in robot manipulators,” Int. J. Control. 87(4), 844860 (2014).10.1080/00207179.2013.861080CrossRefGoogle Scholar
Khalil, H. K., Nonlinear Systems, 3rd ed (Prentice–Hall, Upper Saddle River, NJ, 2002).Google Scholar