Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T15:54:57.888Z Has data issue: false hasContentIssue false

Optimal synthesis of reconfigurable manipulators for robotic assistance in vertical farming

Published online by Cambridge University Press:  24 April 2023

Neeraj Chitre
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
Anubhav Dogra
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
Ekta Singla*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
*
*Corresponding author. E-mail: [email protected]

Abstract

Due to the ever-increasing demand for food commodities and issues arising in their transport from rural to urban areas, commercial agricultural practices with the help of vertical farming are being taken up near urban regions. For the realization of agricultural practices on high-rise vertical farms, where human intervention is quite laborious, robotic assistance would be an effective solution to perform agricultural processes like seeding, transplanting, harvesting, health monitoring, nutrient-water supply, etc. The requirements and complexities of these tasks to be performed are different such as end-effector requirement, payload capacity required, amount of clutter while performing the task, etc. In such cases, an individual robotic configuration would not serve all the purposes and each task may require a different configuration. Purchasing a large number of configurations, as per requirement, is not economical and will also increase the cost of maintenance. Thus, the design of a reconfigurable robot manipulator is proposed in this work which can cater to modular layouts. A thorough study of the processes involved in the farming of leafy vegetables is done and the tasks to be performed by the manipulator are identified. Constrained optimization is performed based on reachability, while minimizing DoF, for the tasks of transplanting, plant heath monitoring, and harvesting to find the optimal configurations which can perform the given tasks. The study resulted in 5-DoF, 4-DoF, and 6-DoF configurations for transplanting, plant heath monitoring, and harvesting, respectively, thus emphasizing the need of a reconfigurable solution. The configurations are realized using modular library and verified to satisfy reachability to provide a complete solution.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, F. and Srivastava, C., “Futuristic urbanism-An overview of vertical farming and urban agriculture for future cities in India,” Int. J. Adv. Res. Sci. Eng. Tech. 4(4), 37673775 (2017).Google Scholar
Zhang, Z., Rod, M. and Hosseinian, F., “A comprehensive review on sustainable industrial vertical farming using film farming technology,” Sustainable Agric. Res. 10(526-2021-496), 4653 (2021). doi: 10.22004/ag.econ.309798.CrossRefGoogle Scholar
Lowenberg-DeBoer, J., Huang, I. Y., Grigoriadis, V. and Blackmore, S., “Economics of robots and automation in field crop production,” Precis. Agric. 21(2), 278299 (2020). doi: 10.1007/s11119-019-09667-5.CrossRefGoogle Scholar
Iqbal, J., Xu, R., Halloran, H. and Li, C., “Development of a multi-purpose autonomous differential drive mobile robot for plant phenotyping and soil sensing,” Electronics 9(9), 1550 (2020). doi: 10.3390/electronics9091550.CrossRefGoogle Scholar
Arad, B., Balendonck, J., Barth, R., Ben-Shahar, O., Edan, Y., Hellström, T., J. Hemming, P. Kurtser, O. Ringdah, T. Tielen and van Tuijl, B., “Development of a sweet pepper harvesting robot,” J. Field Robot. 37(6), 10271039 (2020). doi: 10.1002/rob.21937.CrossRefGoogle Scholar
Strisciuglio, N., Tylecek, R., Blaich, M., Petkov, N., Biber, P., Hemming, J., E. van Henten, T. Sattler, M. Pollefeys, T. Gevers, T. Brox and Fisher, R. B., “Trimbot2020: An Outdoor Robot for Automatic Gardening,” In: ISR 2018; 50th International Symposium on Robotics, VDE (2018) pp. 16.Google Scholar
Roure, F., Moreno, G., Soler, M., Faconti, D., Serrano, D., Astolfi, P., G. Bardaro, A. Gabrielli, L. Bascetta and Matteucci, M., “Grape: Ground Robot for Vineyard Monitoring and Protection,” In: Iberian Robotics Conference (Springer, Cham, 2017) pp. 249260. doi: 10.1007/978-3-319-70833-1_21.Google Scholar
Lehnert, C., English, A., McCool, C., Tow, A. W. and Perez, T., “Autonomous sweet pepper harvesting for protected cropping systems,” IEEE Robot. Autom. Lett. 2(2), 872879 (2017). doi: 10.1109/LRA.2017.2655622.CrossRefGoogle Scholar
Schütz, C., Pfaff, J., Baur, J., Buschmann, T., Ulbrich, H. and Idea, G., “A Modular Robot System for Agricultural Applications,” In: International Conference of Agricultural Engineering, Zurich (2014) pp. 610.Google Scholar
Grimstad, L. and From, P. J., “The Thorvald II agricultural robotic system,” Robotics 6(4), 24 (2017). doi: 10.3390/robotics6040024 10.3390/robotics6040024.CrossRefGoogle Scholar
Hussain, M., Naqvi, S. H. A., Khan, S. H. and Farhan, M., “An Intelligent Autonomous Robotic System for Precision Farming,” In: 2020 3rd International Conference on Intelligent Autonomous Systems (ICoIAS) (2020) pp. 133139. doi: 10.1109/ICoIAS49312.2020.9081844.CrossRefGoogle Scholar
Bascetta, L., Baur, M. and Gruosso, G., “ROBI’: A prototype mobile manipulator for agricultural applications,” Electronics 6(2), 39 (2017). doi: 10.3390/electronics6020039.CrossRefGoogle Scholar
Levin, M. and Degani, A., “Design of a task-based modular re-configurable agricultural robot,” IFAC-PapersOnLine 49(16), 184189 (2016). doi: 10.1016/j.ifacol.2016.10.034.CrossRefGoogle Scholar
Althoff, M., Giusti, A., Liu, S. B. and Pereira, A., “Effortless creation of safe robots from modules through self-programming and self-verification,” Sci. Robot. 4(31), (2019). doi: eaaw1924.10.1126/scirobotics.aaw1924.CrossRefGoogle ScholarPubMed
Yun, A., Moon, D., Ha, J., Kang, S. and Lee, W., “ModMan: An advanced reconfigurable manipulator system with genderless connector and automatic kinematic modeling algorithm,” IEEE Robot. Autom. Lett. 5(3), 42254232 (2020). doi: 10.1109/LRA.2020.2994486.CrossRefGoogle Scholar
Hong, S., Cho, C., Lee, H., Kang, S. and Lee, W., “Joint configuration for physically safe human-robot interaction of serial-chain manipulators,” Mech. Mach. Theory 107, 246260 (2017). doi: 10.1016/j.mechmachtheory.2016.10.002.CrossRefGoogle Scholar
Acaccia, G., Bruzzone, L. and Razzoli, R., “A modular robotic system for industrial applications,” Assem. Autom. 28(2), 151162 (2008). doi: 10.1108/01445150810863734.CrossRefGoogle Scholar
Chen, I. M. and Yang, G., “Kinematic calibration of modular reconfigurable robots using product-of-exponentials formula,” J. Robot. Syst. 14(11), 807821 (1997). doi: 10.1002/(SICI)1097-4563(199711)14:11<807::AID-ROB4>3.0.CO;2-Y.3.0.CO;2-Y>CrossRefGoogle Scholar
Guan, Y., Jiang, L., Zhang, X., Qiu, J. and Zhou, X., “1-DoF Robotic Joint Modules and Their Applications in New Robotic Systems,” In: 2008 IEEE International Conference on Robotics and Biomimetics (2009) pp. 19051910. doi: 10.1109/ROBIO.2009.4913292.CrossRefGoogle Scholar
Stravopodis, N. A. and Moulianitis, V. C., “Rectilinear tasks optimization of a modular serial metamorphic manipulator,” ASME. J. Mech. Robot. 13(1), 011001 (2020). doi: 10.1115/1.4047727.CrossRefGoogle Scholar
Pacheco, M., Fogh, R., Lund, H. H. and Christensen, D. J., “Fable II: Design of a Modular Robot for Creative Learning,” In: 2015 IEEE International Conference on Robotics and Automation (ICRA) (2015) pp. 61346139. doi: 10.1109/ICRA.2015.7140060.CrossRefGoogle Scholar
Evliyaoğlu, K. O. and Elitaş, M., “Design and Development of a Self-adaptive, Reconfigurable and Low-cost Robotic Arm,” In: Mechatronics and Robotics Engineering for Advanced and Intelligent Manufacturing (Springer, Cham, 2017) pp. 395405. doi: 10.1007/978-3-319-33581-0_31.CrossRefGoogle Scholar
Valente, A., “Reconfigurable Industrial Robots-An Integrated Approach to Design the Joint and Link Modules and Configure the Robot Manipulator,” In: Advances in Reconfigurable Mechanisms and Robots II (Springer, Cham, 2016) pp. 779794. doi: 10.1007/978-3-319-23327-7_67.CrossRefGoogle Scholar
Wei, B. and Zhang, D., “Concept Design of a Reconfigurable Robot for Assembly Lines,” In: 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE) (IEEE, 2020) pp. 526530. doi: 10.1109/CACRE50138.2020.9230034.CrossRefGoogle Scholar
Kang, P., Han, L., Xu, W., Wang, P. and Yang, G., “Mobile Robot Manipulation System with a Reconfigurable Robotic Arm: Design and Experiment,” In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2019) pp. 23782383. doi: 10.1109/ROBIO49542.2019.8961389.CrossRefGoogle Scholar
Patel, S. and Sobh, T., “Manipulator performance measures-a comprehensive literature survey,” J. Intell. Robot. Syst. 77(3), 547570 (2015). doi: 10.1007/s10846-014-0024-y.CrossRefGoogle Scholar
Valsamos, C., Moulianitis, V. and Aspragathos, N., “Kinematic synthesis of structures for metamorphic serial manipulators,” ASME. J. Mech. Robot. 6(4), 041005 (2014). doi: 10.1115/1.4027741.CrossRefGoogle Scholar
Tabandeh, S., Melek, W., Biglarbegian, M., Won, S. and Clark, C., “A memetic algorithm approach for solving the task-based configuration optimization problem in serial modular and reconfigurable robots,” Robotica 34(9), 19792008 (2016). doi: 10.1017/S0263574714002690.CrossRefGoogle Scholar
Whitman, J. and Choset, H., “Task-specific manipulator design and trajectory synthesis,” IEEE Robot. Autom. Lett. 4(2), 301308 (2019). doi: 10.1109/LRA.2018.2890206.CrossRefGoogle Scholar
Campos, T., Inala, J. P., Solar-Lezama, A. and Kress-Gazit, H.. Task-Based Design of Ad-hoc Modular Manipulators. In: 2019 International Conference on Robotics and Automation (ICRA) (2019) pp. 60586064. doi: 10.1109/ICRA.2019.8794171.CrossRefGoogle Scholar
Bi, Z. M. and Zhang, W. C., “Concurrent optimal design of modular robotic configuration,” J. Field Robot. 18, 7787 (2001). doi: 10.1002/1097-4563(200102)18:2<77::AIDROB1007>3.0.CO;2-A.Google Scholar
Chocron, O., “Evolutionary design of modular robotic arms,” Robotica 26(3), 323330 (2008). doi: 10.1017/S0263574707003931.CrossRefGoogle Scholar
Icer, E., Hassan, H. A., El-Ayat, K. and Althoff, M., “Evolutionary Cost-Optimal Composition Synthesis of Modular Robots Considering a Given Task,” In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017) pp. 35623568. doi: 10.1109/IROS.2017.8206201.CrossRefGoogle Scholar
Singh, S., Singla, A. and Singla, E., “Modular manipulators for cluttered environments: A task-based configuration design approach,” ASME. J. Mech. Robot. 10(5), 051010 (2018). doi: 10.1115/1.4040633.CrossRefGoogle Scholar
Stravopodis, N. A., Valsamos, C. and Moulianitis, V. C., “An Integrated Taxonomy and Critical Review of Module Designs for Serial Reconfigurable Manipulators,” In: International Conference on Robotics in Alpe-Adria Danube Region (Cham: Springer, 2019) pp. 311. doi: 10.1007/978-3-030-19648-6_1.CrossRefGoogle Scholar
Brandstotter, M., Angerer, A. and Hofbaur, M. W., “The Curved Manipulator (Cuma-Type Arm): Realization of a Serial Manipulator with General Structure in Modular Design,” In: 14th IFToMM World Congress (2015) pp. 403409. doi: 10.6567/IFToMM.14TH.WC.OS2.037.CrossRefGoogle Scholar
Gilbert, E. G., Johnson, D. W. and Keerthi, S. S., “A fast procedure for computing the distance between complex objects in three-dimensional space,” IEEE J. Robot. Autom. 4(2), 193203 (1988). doi: 10.1109/56.2083.CrossRefGoogle Scholar
Dogra, A., Sekhar Padhee, S. and Singla, E., “An optimal architectural design for unconventional modular reconfigurable manipulation system,” ASME. J. Mech. Des. 143(6), 063303 (2020). doi: 10.1115/1.4048821.CrossRefGoogle Scholar
Dogra, A., Mahna, S., Padhee, S. S. and Singla, E., “Unified modeling of unconventional modular and reconfigurable manipulation system (2021), arXiv preprint, https://arxiv.org/abs/2111.11143Google Scholar
Paradkar, V., Raheman, H. and Rahul, K., “Development of a metering mechanism with serial robotic arm for handling paper pot seedlings in a vegetable transplanter,” Artif. Intell. Agric. 5, 5263 (2021). doi: 10.1016/j.aiia.2021.02.001.Google Scholar
Huczala, D., Kot, T., Pfurner, M., Heczko, D., Oščádal, P. and Mostýn, V., “Initial estimation of kinematic structure of a robotic manipulator as an input for its synthesis,” Appl. Sci. 11(8), 3548 (2021). doi: 10.3390/app11083548.CrossRefGoogle Scholar