Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T08:46:17.264Z Has data issue: false hasContentIssue false

ODE-based obstacle avoidance and trajectory planning for unmanned surface vessels

Published online by Cambridge University Press:  04 October 2010

Reza A. Soltan*
Affiliation:
Center for Nonlinear Dynamics and Control, Villanova University, Villanova, PA 19085, USA
Hashem Ashrafiuon
Affiliation:
Center for Nonlinear Dynamics and Control, Villanova University, Villanova, PA 19085, USA
Kenneth R. Muske
Affiliation:
Center for Nonlinear Dynamics and Control, Villanova University, Villanova, PA 19085, USA
*
*Corresponding author. Email: [email protected]

Summary

A new method for real-time obstacle avoidance and trajectory planning of underactuated unmanned surface vessels is presented. In this method, ordinary differential equations (ODEs) are used to define transitional trajectories that can avoid obstacles and reach a final desired target trajectory using a robust tracking control law. The obstacles are approximated and enclosed by elliptical shapes. A transitional trajectory is then defined by a set of ordinary differential equations whose solution is a stable elliptical limit cycle defining the nearest obstacle on the vessel's path to the target. When no obstacle blocks the vessel's path to its target, the transitional trajectory is defined by exponentially stable ODE whose solution is the target trajectory. The planned trajectories are tracked by the vessel through a sliding mode control law that is robust to environmental disturbances and modeling uncertainties and can be computed in real time. The method is illustrated using a complex simulation example with a moving target and multiple moving and rotating obstacles and a simpler experimental example with stationary obstacles.

Type
Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fossen, T. I., Guidance and Control of Ocean Vehicles (John Wiley, New York, NY, 1994).Google Scholar
2.Behal, A., Dawson, D. M., Dixon, W. E. and Fang, Y., “Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics,” IEEE Trans. Autom. Control 47 (3), 495500 (2002).CrossRefGoogle Scholar
3.Godhavn, J., “Nonlinear Tracking of Underactuated Surface Vessels,” Proceedings of the IEEE Conference on Decision and Control, Kobe, Japan, vol. 1 (Dec. 11–13, 1996) pp. 975980.CrossRefGoogle Scholar
4.Sira-Ramirez, H., “Dynamic second-order sliding mode control of the hovercraft vessel,” IEEE Trans. Control Syst. Technol. 10 (6), 860865 (2002).CrossRefGoogle Scholar
5.Lefeber, E., Pettersen, K. Y. and Nijmeijer, H., “Tracking control of an underactuated ship,” IEEE Trans. Control Syst. Technol. 11 (1), 5261 (2003).CrossRefGoogle Scholar
6.Aguiar, A. P. and Hespanha, J. P., “Position tracking of underactuated vehicles,” Proc. Am. Control Conf. 3, 19881993 (2003).Google Scholar
7.Peterson, K. Y., Mazenc, F. and Nijmeijer, H., “Global uniform asymptotic stabilization of an underactuated surface vessel: Experimental results,” IEEE Trans. Control Syst. Technol. 12 (6), 891903 (2004).CrossRefGoogle Scholar
8.Ashrafiuon, H., Muske, K. R., McNinch, L. and Soltan, R., “Sliding model tracking control of surface vessels,” IEEE Trans. Ind. Electron. 55 (11), 40044012 (2008).CrossRefGoogle Scholar
9.Defoort, M., Floquet, T., Kokosy, A. and Perruquetti, W., “A novel higher order sliding mode control scheme,” Syst. Control Lett. 58 (2), 102108 (2009).CrossRefGoogle Scholar
10.Larson, J., Bruch, M., Haiterman, R., Rogers, J. and Webster, R., “Advances in Autonomous Obstacle Avoidance for Unmanned Surface Vehicles,” AUVSI Unmanned Systems, North America, Washington, DC (Aug. 6–9, 2007).Google Scholar
11.Fujimura, K. and Samet, H., “A hierarchical strategy for path planning among moving obstacles,” IEEE Trans. Robot. Autom. 5 (1), 6169 (1989).CrossRefGoogle Scholar
12.Aggarwal, N. and Fujimura, K., “Motion Planning Amidst Planar Moving Obstacles,” IEEE International Conference on Robotics and Automation, San Diego, CA, vol. 3 (May 8–13, 1994) pp. 21532158.Google Scholar
13.Xiaohua, W., Yadav, V. and Balakrishnan, S. N., “Cooperative UAV formation flying with obstacle/collision avoidance,” IEEE Trans. Control Syst. Technol. 15 (4), 672679 (2007).Google Scholar
14.Dieguez, A. R., Sanz, R. and Lopez, J., “Deliberative on-line local path planning for autonomous mobile robots,” J. Intell. Robot. Syst.: Theor. Appl. 37 (1), 119 (2003).CrossRefGoogle Scholar
15.Zavlangasand Tzafestas, S. G., “Motion control for mobile robot obstacle avoidance and navigation: A fuzzy logic- based approach,” Syst. Anal.Model. Simul. 43 (12), 16251637 (2003).CrossRefGoogle Scholar
16.Ferrara, A. and Rubagotti, M., “Second-order sliding-mode control of a mobile robot based on a harmonic potential field,” IET Control Theor. Appl. 2 (9), 807818 (2008).CrossRefGoogle Scholar
17.Kim, J. and Khosla, P. K., “Real-time obstacle avoidance using harmonic potential functions,” IEEE Trans. Robot. Autom. 3, 338349 (1992).CrossRefGoogle Scholar
18.Ge, S. S. and Cui, Y. J., “Dynamic motion planning for mobile robots using potential field method,” Autom. Robot. 1, 207222 (2002).Google Scholar
19.Cosio, F. A. and Castaneda, M. P., “Autonomous robot navigation using adaptive potential fields,” Math. Comput. Model. 40 (9–10), 11411156 (2004).CrossRefGoogle Scholar
20.Pathak, K. and Agrawal, S. K., “An integrated path-planning and control approach for nonholonomic unicycles using switched local potentials,” IEEE Trans. Robot. 21 (6), 12011208 (2005).CrossRefGoogle Scholar
21.Fahimi, F., Nataraj, C. and Ashrafiuon, H., “Real-time obstacle avoidance for multiple mobile robots,” Robotica 27 (2), 189198 (2009).CrossRefGoogle Scholar
22.Ellekilde, L. P. and Perram, J. W., “Tool center trajectory planning for industrial robot manipulators using dynamical systems,” Int. J. Robot. Res. 24 (5), 385396 (2005).CrossRefGoogle Scholar
23.Kim, D. H. and Kim, J. H., “A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer,” Robot. Auton. Syst. 42 (1), 1730 (2003).CrossRefGoogle Scholar
24.Kim, D. H. and Chongkug, P., “Limit Cycle Navigation Method for Mobile Robot,” 27th Chinese Control Conference, Kunming, Yunnan, China (July 16–18, 2008) pp. 320324.Google Scholar
25.Grech, R. and Fabri, S. G., “Trajectory Tracking in the Presence of Obstacles using the Limit Cycle Navigation Method,” IEEE International Symposium on Intelligent Control and the 13th Mediterranean Conference on Control and Automation, Limassol, Cyprus (June 27–29, 2005) pp. 101106.Google Scholar
26.Soltan, R. A., Ashrafiuon, H. and Muske, K. R., “State-Dependent Trajectory Planning and Tracking Control of Unmanned Surface Vessels,” American Control Conference, St. Louis, MO (June 10–12, 2009) pp. 35973602.Google Scholar
27.Ghaffari, A., Tomizuka, M. and Soltan, R. A., “The stability of limit cycles in nonlinear systems,” Nonlinear Dyn. 56 (3), 269275 (2008).CrossRefGoogle Scholar
28.Nikkhah, M., Ashrafiuon, H. and Muske, K., “Optimal Sliding Mode Control for Underactuated Systems,” American Control Conference, Minneapolis, MN (June 14–16, 2006) pp. 46884693.Google Scholar
29.Muske, K., Ashrafiuon, H., Haas, G., McCloskey, R. and Flynn, T., “Identification of a Control Oriented Nonlinear Dynamic USV Model,” American Control Conference, Seattle, WA (June 11–13, 2008) pp. 562567.Google Scholar
30.Utkin, V. I., “Variable structure systems with sliding modes,” IEEE Trans. Autom. Control 22, 212222 (1977).CrossRefGoogle Scholar
31.Hung, J. Y., Gao, W. and Hun, J. C., “Variable structure control: A survey,” IEEE Trans. Ind. Electron. 40 (1), 222 (1993).CrossRefGoogle Scholar
32.Khalil, H. K., Nonlinear Systems (Prentice-Hall, Upper Saddle River, NJ, 1996) pp. 552579.Google Scholar
33.Nikkhah, M. and Ashrafiuon, H., “Robust Control of a Vessel Using Camera Feedback and Extended Kalman Filter,” Paper No. IMECE2006-16164, Proceedings of ASME IMECE, Chicago, IL (Nov. 5–10, 2006).Google Scholar