Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-24T15:06:28.416Z Has data issue: false hasContentIssue false

A novel integrated architecture to X-in-the-loop simulation applied to ASV navigation

Published online by Cambridge University Press:  20 September 2024

Tiago Trindade Ribeiro*
Affiliation:
LaR - Robotics Laboratory, Department of Electrical and Computer Engineering, Salvador, Bahia, Brazil
Bianca Fernandes
Affiliation:
LaR - Robotics Laboratory, Department of Electrical and Computer Engineering, Salvador, Bahia, Brazil
Henrique Poleselo
Affiliation:
LaR - Robotics Laboratory, Department of Electrical and Computer Engineering, Salvador, Bahia, Brazil
Vinicius Vidal
Affiliation:
Faculty of Engineering, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
Vitor Lopes
Affiliation:
Faculty of Engineering, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
Mathaus Ferreira
Affiliation:
Faculty of Engineering, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
Edvaldo Neto
Affiliation:
Santo Antônio Energia S.A, Hydroelectric plant Santo Antônio, Porto Velho, Rondônia, Brazil
Andre Gustavo Scolari Conceicao
Affiliation:
LaR - Robotics Laboratory, Department of Electrical and Computer Engineering, Salvador, Bahia, Brazil
Leonardo de Mello Honorio
Affiliation:
Faculty of Engineering, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
*
Corresponding author: Tiago Trindade Ribeiro; Email: [email protected]

Abstract

Designing autonomous robotic systems for monitoring tasks in critical security scenarios requires more rigorous verification criteria. The losses associated with unsuccessful practical experiments are immeasurable, ranging from the simple loss of high-value-added equipment to those related to loss of life. This reality justifies the need to adopt an extensive framework of tools for realistic, efficient, and responsive computer simulation. This article proposes a novel integration architecture and combines open-source tools to promote the successful implementation of autonomous robotic systems in monitoring tasks. The proposed solution relies on consolidated tools like Robot Operating System (ROS), Gazebo Simulator, and ArduPilot FCU (Flight Control Unit). It includes full support for implementing XITL techniques (such as Model, Software, and Hardware) – in the Loop. Experimental results demonstrate the proposal’s effectiveness for a new model of autonomous surface vehicles (ASVs) in a realistic environment, dedicated to environmental monitoring in challenging natural conditions, commonly found in a stretch of the Madeira River – Brazil, specifically at Santo Antônio hydroelectric plant.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Azouaoui, O. and Chohra, A., “Evolution, behavior, and intelligence of autonomous robotic systems (ARS),” IFAC Proc Vol 31(3), 2531 (1998).3rd IFAC Symposium on Intelligent Autonomous Vehicles 1998 (IAV’98), Madrid, Spain, 25-27 March.CrossRefGoogle Scholar
Editorial, “The rise of ocean robots,” Nat Geosci 13(1), 393 (2020).CrossRefGoogle Scholar
Luiz Fernando Oliveira, A. M. and Silva, M., “Advances in forest robotics: A state-of-the-art survey,” Robotics 10(53), 03 (2021).Google Scholar
Guenat, S., Purnell, P., Davies, Z. G., Nawrath, M., Stringer, L. C., Babu, G. R., Balasubramanian, M., Ballantyne, E. E. F., Bylappa, B. K., Chen, B., Jager, P. D., Prete, A. D., Nuovo, A. D., Ehi-Eromosele, C. O., Torbaghan, M. E., Evans, K. L., Fraundorfer, M., Haouas, W., Izunobi, J. U., Jauregui-Correa, J. C., Kaddouh, B. Y., Lewycka, S., MacIntosh, A. C., Mady, C., Maple, C., Mhiret, W. N., Mohammed-Amin, R. K., Olawole, O. C., Oluseyi, T., Orfila, C., Ossola, A., Pfeifer, M., Pridmore, T., Rijal, M. L., Rega-Brodsky, C. C., Robertson, I. D., Rogers, C. D. F., Rougé, C., Rumaney, M. B., Seeletso, M. K., Shaqura, M. Z., Suresh, L. M., Sweeting, M. N., Buck, N. T., Ukwuru, M. U., Verbeek, T., Voss, H., Wadud, Z., Wang, X., Winn, N. and Dallimer, M., “Meeting sustainable development goals via robotics and autonomous systems,” Nat Commun 13, 3559 (2022).Google Scholar
Herbert-Read, J. E., Thornton, A., Amon, D. J., Birchenough, S. N. R., Côté, I. M., Dias, M. P., Godley, B. J., Keith, S. A., McKinley, E., Peck, L. S., Calado, R., Defeo, O., Degraer, S., Johnston, E. L., Kaartokallio, H., Macreadie, P. I., Metaxas, A., Muthumbi, A. W. N., Obura, D. O., Paterson, D. M., Piola, A. R., Richardson Anthony, J., Schloss, I. R., Snelgrove, P. V. R., Stewart, B. D., Thompson, P., Watson, G. J., Worthington, T., Yasuhara, M. and Sutherland, W. J., “A global horizon scan of issues impacting marine and coastal biodiversity conservation,” Nat Ecol Evol 6, 12621270 (2022).CrossRefGoogle ScholarPubMed
Paravisi, M., Santos, D. H., Jorge, V., Heck, G., Gonçalves, L. and Amory, A., “Unmanned surface vehicle simulator with realistic environmental disturbances,” Sensors 19(5), 1068 (2019).CrossRefGoogle ScholarPubMed
Chitikena, H., Sanfilippo, F. and Ma, S., “Robotics in search and rescue (sar) operations: An ethical and design perspective framework for response phase,” Appl Sci 13(3), 1800 (2023).CrossRefGoogle Scholar
Zhang, S., Wang, R., Tian, Y., Yao, J. and Zhao, Y., “Motion analysis of the fire-fighting robot and trajectory correction strategy,” Simul Model Pract Th 125, 102738 (2023).CrossRefGoogle Scholar
Chang, H.-C., Hsu, Y.-L., Hung, S.-S., Ou, G.-R., Wu, J.-R. and Hsu, C., “Autonomous water quality monitoring and water surface cleaning for unmanned surface vehicle,” Sensors 21(4), 1102 (2021).CrossRefGoogle ScholarPubMed
Rejeb, A., Abdollahi, A., Rejeb, K. and Treiblmaier, H., “Drones in agriculture: A review and bibliometric analysis,” Comput Electron Agr 198, 107017 (2022).CrossRefGoogle Scholar
Jorge, V., Granada, R., Maidana, R., Jurak, D., Heck, G., Negreiros, A., dos Santos, D., Gonçalves, L. and Amory, A., “A survey on unmanned surface vehicles for disaster robotics: Main challenges and directions,” Sensors 19(3), 702 (2019).CrossRefGoogle Scholar
Mayya, S., Ramachandran, R. K., Zhou, L., Senthil, V., Thakur, D., Sukhatme, G. S. and Kumar, V., “Adaptive and risk-aware target tracking for robot teams with heterogeneous sensors,” IEEE Robot Autom Lett 7(2), 56155622 (2022).CrossRefGoogle Scholar
Plummer, A., “Model-in-the-loop testing,” Proc Inst Mech Eng Pt I J Syst Control Eng 220, 183199 (2006).Google Scholar
Jeong, S., Kwak, Y. and Lee, W. J., “Software-in-the-Loop Simulation for Early-Stage Testing of Autosar Software Component,” In: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), (2016) pp. 5963.Google Scholar
Bacic, M., “On Hardware-in-the-Loop Simulation,” In: Proceedings of the 44th IEEE Conference on Decision and Control, (2005) pp. 31943198.Google Scholar
Babic, A., Vasiljevic, G. and Miskovic, N., “Vehicle-in-the-loop framework for testing long-term autonomy in a heterogeneous marine robot swarm,” IEEE Robot Autom Lett 5(3), 44394446 (2020).CrossRefGoogle Scholar
Silano, G., Oppido, P. and Iannelli, L., “Software-in-the-Loop Simulation for Improving Flight Control System Design: A Quadrotor Case Study,” In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), (2019) pp. 466471.Google Scholar
Xian, B., Zhao, B., Zhang, Y. and Zhang, X., “A low-cost hardware-in-the-loop-simulation testbed of quadrotor UAV and implementation of nonlinear control schemes,” Robotica 35(3), 588612 (2017).CrossRefGoogle Scholar
Hu, Y., Gao, F., Zhao, X., Yang, T., Shen, H., Qi, C. and Cao, R., “A parameter dimension reduction-based estimation approach to enhance the kinematic accuracy of a parallel hardware-in-the-loop docking simulator,” Robotica 39(6), 959974 (2021).CrossRefGoogle Scholar
Mihalic, F., Truntic, M. and Hren, A., “Hardware-in-the-loop simulations: A historical overview of engineering challenges,” Electronics 11(15), 2462 (2022).CrossRefGoogle Scholar
Ton, C., Kan, Z. and Mehta, S. S., “Obstacle avoidance control of a human-in-the-loop mobile robot system using harmonic potential fields,” Robotica 36(4), 463483 (2018).CrossRefGoogle Scholar
de Mello, R. C., Jimenez, M. F., Ribeiro, M. R. N., Guimarães, R. L. and Frizera-Neto, A., “On human-in-the-loop cps in healthcare: A cloud-enabled mobility assistance service,” Robotica 37(9), 14771493 (2019).CrossRefGoogle Scholar
Ivanovic, A., Polic, M., Tabak, J. and Orsag, M., “Render-in-the-Loop Aerial Robotics Simulator: Case Study on Yield Estimation in Indoor Agriculture,” In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), (2022) pp. 787793.Google Scholar
Brandl, R., Montoya, J., Strauss-Mincu, D. and Calin, M., “Power System-in-the-Loop Testing Concept for Holistic System Investigations,” In: 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), (2018) pp. 560565.Google Scholar
Fagcang, H., Stobart, R. and Steffen, T., “A review of component-in-the-loop: Cyber-physical experiments for rapid system development and integration,” Adv Mech Eng 14(8), 16878132221109969 (2022).CrossRefGoogle Scholar
Moten, S., Celiberti, F., Grottoli, M., van der Heide, A. and Lemmens, Y., “X-in-the-Loop Advanced Driving Simulation Platform for the Design, Development, Testing and Validation of adas,” In: 2018 IEEE Intelligent Vehicles Symposium (IV), (2018) pp. 16.Google Scholar
Sathiakumar, S., “Robotic seafloor geodesy to help earthquake and tsunami monitoring,” Nat Rev Earth Environ 2(7), 450450 (2021).CrossRefGoogle Scholar
Laschi, C. and Calisti, M., “Soft robot reaches the deepest part of the ocean,” Nature 591(7848), 3536 (2021).CrossRefGoogle ScholarPubMed
Bujas, J., Dworak, D., Turek, W. and Byrski, A., “High-performance computing framework with desynchronized information propagation for large-scale simulations,” J Comput Sci 32, 7086 (2019).CrossRefGoogle Scholar
Bingham, B., Agüero, C., McCarrin, M., Klamo, J., Malia, J., Allen, K., Lum, T., Rawson, M. and Waqar, R., “Toward Maritime Robotic Simulation in Gazebo,” In: OCEANS 2019 MTS/IEEE SEATTLE, (2019) pp. 110.Google Scholar
Katsuno, E. T., de Castro, F. S. and Dantas, J. L. D., “Analysis of the rigid-body fluid-structure interaction on a log boom,” J Fluid Struct 115, 103788 (2022).CrossRefGoogle Scholar
Koenig, N. and Howard, A., “Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator,” In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), (2004) pp. 21492154.Google Scholar
ArduPilot, ArduPilot Project: Open Source Autopilot. Available: https://ardupilot.org. Accessed: January 2024.Google Scholar
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R. and Ng, A., “Ros: An Open-Source Robot Operating System,” In: ICRA Workshop on Open Source Software, (2009) pp. 01.Google Scholar
da Silva, M. F., de Mello Honório, L., dos Santos, M. F., dos Santos Neto, A. F., Cruz, N. A., Matos, A. C. C. and Westin, L. G. F., “Project and control allocation of a 3 dof autonomous surface vessel with aerial azimuth propulsion system,” IEEE Access 9, 52125227 (2021).CrossRefGoogle Scholar
Regina, B. A., Honório, L. M., Pancoti, A. A. N., Silva, M. F., Santos, M. F., Lopes, V. M. L., Neto, A. F. S. and Westin, L. G. F., “Hull and aerial holonomic propulsion system design for optimal underwater sensor positioning in autonomous surface vessels,” Sensors 21(2), 571 (2021).CrossRefGoogle ScholarPubMed
Cerqueira, R., Trocoli, T., Neves, G., Joyeux, S., Albiez, J. and Oliveira, L., “A novel GPU-based sonar simulator for real-time applications,” Comput Graph 68, 6676 (2017).CrossRefGoogle Scholar
Supplementary material: File

Ribeiro et al. supplementary material

Ribeiro et al. supplementary material
Download Ribeiro et al. supplementary material(File)
File 29.1 MB