Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-21T23:02:46.139Z Has data issue: false hasContentIssue false

A new family of spherical parallel manipulators

Published online by Cambridge University Press:  24 June 2002

Raffaele Di Gregorio
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat,1; 44100 FERRARA (Italy)[email protected]

Abstract

In the literature, 3-RRPRR architectures were proposed to obtain pure translation manipulators. Moreover, the geometric conditions, which 3-RRPRR architectures must match, in order to make the end-effector (platform) perform infinitesimal (elementary) spherical motion were enunciated. The ability to perform elementary spherical motion is a necessary but not sufficient condition to conclude that the platform is bound to accomplish finite spherical motion, i.e. that the mechanism is a spherical parallel manipulator (parallel wrist). This paper demonstrates that the 3-RRPRR architectures matching the geometric conditions for elementary spherical motion make the platform accomplish finite spherical motion, i.e. they are parallel wrists (3-RRPRR wrist), provided that some singular configurations, named translation singularities, are not reached. Moreover, it shows that 3-RRPRR wrists belong to a family of parallel wrists which share the same analytic expression of the constraints which the legs impose on the platform. Finally, the condition that identifies all the translation singularities of the mechanisms of this family is found and geometrically interpreted. The result of this analysis is that the translation singularity locus can be represented by a surface (singularity surface) in the configuration space of the mechanism. Singularity surfaces drawn by exploiting the given condition are useful tools in designing these wrists.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)