Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T01:18:37.387Z Has data issue: false hasContentIssue false

A new bionic hydraulic actuator system for legged robots with impact buffering, impact energy absorption, impact energy storage, and force burst

Published online by Cambridge University Press:  03 December 2021

Jiaqi Li*
Affiliation:
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
Dacheng Cong
Affiliation:
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
Yu Yang
Affiliation:
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
Zhidong Yang
Affiliation:
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
*
*Corresponding author. E-mail: [email protected]

Abstract

It is a big challenge for bionic legged robots to realize desired jumping heights and forward-running speeds, let alone achieve springbok-style jump-running. A key limitation is that there is no actuator system that can mimic the springbok’s muscle system to drive leg–foot system movements. In this paper, we analyze the movement process of springboks and summarize some key characteristics of actuator systems. Some key concepts are then identified based on these key characteristics. Next, we propose a new bionic hydraulic joint actuator system with impact buffering, impact energy absorption, impact energy storage, and force burst, which can be applied to various legged robots to achieve higher running speeds, higher jumping heights, longer endurance, heavier loads, and lighter mass.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Raibert, M., Blankespoor, K., Nelson, G. and Playter, R., “BigDog, the Rough-Terrain Quadruped Robot,” IFAC Proceedings Volumes, 41(2), 1082210825 (2008). ISSN: 1474-6670, ISBN: 9783902661005.CrossRefGoogle Scholar
Semini, C., Barasuol, V., Goldsmith, J., Frigerio, M., Focchi, M., Gao, Y. and Caldwell, D. G., “Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max,” IEEE/ASME Trans. Mechatron. 22(2), 635646 (2017). doi: 10.1109/TMECH.2016.2616284.CrossRefGoogle Scholar
Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F. and Caldwell, D. G., “Design of HyQ – a hydraulically and electrically actuated quadruped robot,” Proc. Inst. Mech. Eng.225(6), 831849 (2011). doi: 10.1177/0959651811402275.CrossRefGoogle Scholar
Khan, H., Kitano, S., Frigerio, M. and Camurri, M., “Development of the lightweight hydraulic quadruped robot — MiniHyQ,” 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA (2015) pp. 16. doi: 10.1109/TePRA.2015.7219671.CrossRefGoogle Scholar
Barasuol, V., Villarreal Magaña, O., Sangiah, D., Frigerio, M., Baker, M., Morgan, R., Medrano-Cerda, G., Caldwell, D. and Semini, C., “Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control,” Front. Robot. AI, 5 (2018). doi: 10.3389/frobt.2018.00051.CrossRefGoogle Scholar
Wensing, P. M., Wang, A., Seok, S., Otten, D., Lang, J. and Kim, S., “Proprioceptive actuator design in the MIT cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots,” IEEE Trans. Robot 33(3), 509522 (2017). doi: 10.1109/TRO.2016.2640183.CrossRefGoogle Scholar
Park, H. W., Wensing, P. M. and Kim, S., “High-speed bounding with the MIT Cheetah 2: Control design and experiments,” Int. J. Robot. Res.36 (2017). doi: 10.1177/0278364917694244.CrossRefGoogle Scholar
Park, H. W. and Kim, S., “The MIT Cheetah, an electrically-powered quadrupedal robot for high-speed running,” J. Robot. Soc. Jpn.32(4), 323328 (2014). Released June 15, 2014, Online ISSN: 1884-07145, Print ISSN: 0289-1824.CrossRefGoogle Scholar
Ananthanarayanan, A., Azadi, M. and Kim, S., “Towards a bio-inspired leg design for high-speed running,” Bioinspir Biomim. 7(4), 046005 (2012). doi: 10.1088/1748-3182/7/4/046005. Epub 2012 Aug 8. PMID: 22872655.CrossRefGoogle ScholarPubMed
Katz, B., Carlo, J. D. and Kim, S., “Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control,” 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada (2019) pp. 62956301. doi: 10.1109/ICRA.2019.8793865.CrossRefGoogle Scholar
Carlo, J., Wensing, P. M., Katz, B., Bledt, G. and Kim, S., “Dynamic Locomotion in the MIT Cheetah 3 through Convex Model-Predictive Control,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018) pp. 19. doi: 10.1109/IROS.2018.8594448.CrossRefGoogle Scholar
Folkertsma, G. A., Kim, S. and Stramigioli, S., “Parallel Stiffness in a Bounding Quadruped with Flexible Spine,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura (2012) pp. 22102215. doi: 10.1109/IROS.2012.6385870.CrossRefGoogle Scholar
Pratt, J. and Krupp, B., “Series Elastic Actuators for Legged Robots,” Proceedings of SPIE – The International Society for Optical Engineering (2004). doi: 10.1117/12.548000.CrossRefGoogle Scholar
Sharbafi, M. A., and Seyfarth, A., “Hybrid Electric-Pneumatic Actuator (EPA) for Legged Locomotion Project Proposal (Sachbeihilfe),” (2019).Google Scholar
Raibert, M., Blankespoor, K., Nelson, G. and Playter, R., “BigDog, the Rough-Terrain Quadruped Robot,” in IFAC Proceedings Volumes (IFAC-PapersOnline) vol. 17(41) (2008) pp. 1082210825. doi: 10.3182/20080706-5-KR-1001.01833.CrossRefGoogle Scholar
Agboola-Dobson, A., Wei, G. and Ren, L., “Biologically inspired design and development of a variable stiffness powered Ankle-Foot prosthesis,” ASME. J. Mech. Robot. 11(4), 041012 (2019). doi: 10.1115/1.4043603.CrossRefGoogle Scholar
Liu, Y. and Ben-Tzvi, P., “An articulated closed kinematic chain planar robotic leg for high-speed locomotion,” ASME. J. Mech. Robot. 12(4), 041003 (2020). doi: 10.1115/1.4045689.CrossRefGoogle Scholar
Raibert, M. H. , andCraig, J. J.,, Hybrid position/force control of manipulators[J],” Asme J of Dynamic Systems Measurement & Control, 1981, 102(2), 126133.CrossRefGoogle Scholar
T. Boaventura, C. Semini, J. Buchli, M. Frigerio, M. Focchi and D. G. Caldwell, “Dynamic torque control of a hydraulic quadruped robot,” 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 1889–1894. doi: 10.1109/ICRA.2012.6224628.CrossRefGoogle Scholar
Mehdi, H. and Boubaker, O., “Stiffness and Impedance Control Using Lyapunov Theory for Robot-Aided Rehabilitation[J],” Int. J. Soc. Robot., 4(1), 107119 (2012).CrossRefGoogle Scholar
Yunfeng, J., Lei, J., Ruina, D., Lingdong, M., Chenxing, J., Peng, X., Qichang, Y., Qindan, D., Liang, G., Zhenjie, L. and Yuchuan, L., A Quadruped Robot Hydraulic Power System with Dual Pump Sources in Parallel for Oil Supply (China North Vehicle Research Institute, Beijing, 2019) p. CN110185671A.Google Scholar
Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H. and Gunther, M., “Intelligence by mechanics,” Philos. Trans. A Math. Phys. Eng. Sci. 365, 199220 (2007). doi: 10.1098/rsta.2006.1911.CrossRefGoogle Scholar
Kim, D., Lee, S., Shin, H., Lee, G, Park, J. and Ahn, K., “Principal properties and experiments of hydraulic actuator for robot,” 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2014, pp. 458–460, doi: 10.1109/URAI.2014.7057456.CrossRefGoogle Scholar
Chu, Z., Luo, J. and Fu, Y., “Variable stiffness control and implementation of hydraulic SEA based on virtual spring leg,” 2016 IEEE International Conference on Mechatronics and Automation, 2016, pp. 677–682. doi: 10.1109/ICMA.2016.7558644.CrossRefGoogle Scholar
Hua, Z., Rong, X, Li, Y., Li, Y., Sun, Y. and Su, B., “Design, Modelling and Validation of Hydraulic Servo Actuator With Passive Compliance for Legged Robots,” in IEEE Access, vol. 6, pp. 59486–59495, 2018. doi: 10.1109/ACCESS.2018.2875129.CrossRefGoogle Scholar
Lin, T, Chen, Q, Ren, H, Huang, W., Chen, Q. and Fu, S., “Review of boom potential energy regeneration technology for hydraulic construction machinery[J],” Renew. Sustain. Energy Rev. 79, 358371 (2017).CrossRefGoogle Scholar