Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T05:46:40.283Z Has data issue: false hasContentIssue false

A multi-configuration kinematic model for active drive/steer four-wheel robot structures

Published online by Cambridge University Press:  30 January 2015

Edgar A. Martínez-García*
Affiliation:
Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Juárez, Chihuahua, México
Erik Lerín-García
Affiliation:
Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Juárez, Chihuahua, México
Rafael Torres-Córdoba
Affiliation:
Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Juárez, Chihuahua, México
*
*Corresponding author. E-mail: [email protected]

Summary

In this study, a general kinematic control law for automatic multi-configuration of four-wheel active drive/steer robots is proposed. This work presents models of four-wheel drive and steer (4WD4S) robotic systems with all-wheel active drive and steer simultaneously. This kinematic model comprises 12 degrees of freedom (DOFs) in a special design of a mechanical structure for each wheel. The control variables are wheel yaw, wheel roll, and suspension pitch by active/passive damper systems. The pitch angle implies that a wheel's contact point translates its position over time collinear with the robot's lateral sides. The formulation proposed involves the inference of the virtual z-turn axis (robot's body rotation axis) to be used in the control of the robot's posture by at least two acceleration measurements local to the robot's body. The z-turn axis is deduced through a set of linear equations in which the number of equations is equal to the number of acceleration measurements. This research provides two main models for stability conditions. Finally, the results are sustained by different numerical simulations that validate the system with different locomotion configurations.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alexander, J. C. and Maddocks, J. H., “On the kinematics of wheeled mobile robots,” I. J. Robotic Res. 8 (5), 1527 (1989).Google Scholar
2. Arslan, S. and Temeltas, H., “Robust Motion Control of a Four Wheel Drive Skid-Steere Mobile Robot,” Proceedings of the 7th International Conference on Electrical and Electronics Engineering, vol. 2 (2011) pp. 415419.Google Scholar
3. Baillieul, J., “Avoiding Obstacles and Resolving Kinematic Redundancy,” Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3 (1986) pp. 16981704.Google Scholar
4. Bartlett, P. W., Wettergreen, D. and Whittaker, W., “Design of the Scarab Rover for Mobility and Drilling in Lunar Cold Traps,” International Symposium on Artificial Intelligence, Robotics and Automation in Space, (2008).Google Scholar
5. Bouloubasis, A. and McKee, G., “The Mobility System of the Multi-Tasking Rover (mtr),” IEEE International Conference on Robotics and Automation (2007) pp. 4919–4924.Google Scholar
6. Campion, G., Bastin, G. and Novel, B. d'Andréa, “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots,” IEEE Trans. Robot. Autom. 12 (1), 4762 (1996).Google Scholar
7. Cocco, L. and Rapuano, S., “Accurate Speed Measurement Methodologies for Formula One Cars,” Proceedings of the Instrumentation and Measurement Technology Conference IMTC 2007. IEEE (2007) pp. 1–6.Google Scholar
8. Cordes, F., Dettmann, A. and Kirchner, F., “Locomotion Modes for a Hybrid Wheeled-Leg Planetary Rover,” IEEE International Conference on Robotics and Biomimetics (ROBIO) (2011) pp. 2586–2592.Google Scholar
9. Song, Yong-duan, Chen, He-nan and Li, Dan-yongVirtual-point-based fault-tolerant lateral and longitudinal control of 4W-steering vehicles,” IEEE Trans. Intell. Transp. Syst. 12 (4), 13431351 (Dec. 2011).Google Scholar
10. Solea, R., Filipescu, A., Minzu, V. and Filipescu, S., “Sliding-Mode Trajectory-Tracking Control for a Four-Wheel-Steering Vehicle,” Proceedings of the 8th IEEE International Conference on Control and Automation (Jun. 2010), IEEE, pp. 382–387.Google Scholar
11. Freitas, G., Gleizer, G., Lizarralde, F., Hsu, L. and Reis, N. R. S. dos, “Kinematic reconfigurability control for an environmental mobile robot operating in the amazon rain forest,” J. Field Robot. 27 (2), 197216 (Mar. 2010).Google Scholar
12. Grepl, R., Vejlupek, J., Lambersky, V., Jasansky, M., Vadlejch, F. and Coupek, P., “Development of 4ws/4wd Experimental Vehicle: Platform for Research and Education in Mechatronics,” IEEE International Conference on Mechatronics (ICM) (2011) pp. 893–898.Google Scholar
13. Home, H. W., “Can we utilize the rear wheels of FF cars?,” Available at: http://world.honda.com/history/challenge/19874ws/ (Apr. 2013).Google Scholar
14. Iagnemma, K., Rzepniewski, A., Dubowsky, S., Pirjanian, P., Huntsberger, T., and Schenker, P., “Mobile robot kinematic reconfigurability for rough-terrain,” In Proceedings SPIE's International Symposium on Intelligent Systems and Advanced Manufacturing, Aug. 2000.Google Scholar
15. Iagnemma, K., Rzepniewski, A., Dubowsky, S. and Schenker, P., “Control of robotic vehicles with actively articulated suspensions in rough terrain,” Auton. Robots 14, 516 (2003).CrossRefGoogle Scholar
16. Inc, M. R., “Pioneer, 3-at”, Online Available at: http://www.mobilerobots.com/ResearchRobots/P3AT.aspx (Apr. 2013).Google Scholar
17. Inc, M. R., “Seekur, autonomous all-weather robot,” Online Available at: http://www.mobilerobots.com/ResearchRobots/Seekur.aspx (Apr. 2013).Google Scholar
18. Inc, S. R., “Segway, announces its newest rmp – arti,” Online Available at: http://rmp.segway.com/2012/10/09/segway-announces-its-newest-rmp-arti/ (Apr. 2013).Google Scholar
19. Johnston, I. M., “Worlds best tractor in 1910!” Online Available at: http://www.greenmountpress.com.au/cottongrower/Back%20issues/281fmcot07/54_TractorTales.pdf (Feb. 2007).Google Scholar
20. Kasahua, M. and Mori, Y., “Trajectory tracking control of the four-wheel vehicle according to speed change,” SICE Annu. Conf. 201, 34493452 (2010).Google Scholar
21. Hiraoka, T., Nishihara, O. and Kumamoto, H., “Automatic path-tracking controller of a four-wheel steering vehicle,” Vehcicle Syst. Dyn. 47 (10), 12051227 (Oct. 2009).CrossRefGoogle Scholar
22. Maciejewski, A. A. and Klein, C. A., “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int. J. Robot. Res. 4, 109117 (1985).Google Scholar
23. Mandow, A., Martinez, J., Morales, J., Blanco, J.-L., Garcia-Cerezo, A. and Gonzalez, J., “Experimental Kinematics for Wheeled Skid-Steer Mobile Robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2007) pp. 1222–1227.Google Scholar
24. Martínez-García, E. and Torres-Cordoba, R., “4wd Skid-Steer Trajectory Control of a Rover with Spring-Based Suspension Analysis,” In Intelligent Robotics and Applications (Liu, H., Ding, H., Xiong, Z. and Zhu, X., eds.) Lecture Notes in Computer Science, vol. 6424 (Springer, Berlin Heidelberg, 2010) pp. 453464.Google Scholar
25. Martinez-Garcia, E. and Torres-Cordoba, R., “Exponential fields formulation for wmr navigation,” J. Appl. Bionics Biomech. 9 (4), 375397 (2011).Google Scholar
26. Ollero-Baturone, A., Robótica: Manipuladores y Robots Móviles (Marcombo, Barcelona, España, 2001).Google Scholar
27. Reina, G., “Cross-coupled control for all-terrain rovers,” Sensors 13 (1), 785800 (2013).Google Scholar
28. Shamah, B., Apostolopoulos, D., Rollins, E. and Whittaker, W. red, “Field Validation of Nomads Robotic Locomotion,” Proceedings of the 1998 SPIE International Conference on Mobile Robots and Intelligent Transportation Systems (1998) pp. 214–222.Google Scholar
29. Siciliano, B. and Khatib, O., Springer Handbook of Robotics (Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007).Google Scholar
30. Tao Peng, S. and Sheu, J. Jia, “An Anti-Skidding Control Approach for Autonomous Path Tracking of a 4ws/4wd Vehicle,” Proceedings of the 7th Asian Control Conference (2004) pp. 617–622.Google Scholar
31. Tarokh, M., Ho, H. D. and Bouloubasis, A., “Systematic kinematics analysis and balance control of high mobility rovers over rough terrain,” Robot. Auton. Syst. 61 (1), 1324 (2013).Google Scholar
32. Grabianowski, E. “How the Jeep Hurricane works,” Online Available at: https://s3-ap-southeast-1.amazonaws.com/erbuc/files/5747_75d016c7-a01b-426a-95b3-dfedced2f6b2.pdf (Apr. 2013).Google Scholar
33. In Depth tutorials and information, “Four-wheel steering (4WS)”, Online Available at: http://what-when-how.com/automobile/four-wheel-steering-4ws-automobile/ (Apr. 2013).Google Scholar
34. Nissan motor company, “4 wheel active steer (4WAS),” Online Available at: http://www.nissan-global.com/EN/DOCUMENT/PDF/TECHNOLOGY/TECHNICAL/4was_en.pdf (Apr. 2013).Google Scholar
35. Wettergreen, D., Jonak, D., Kohanbash, D., Moreland, S., Spiker, S. and Teza, J., “Field experiments in mobility and navigation with a lunar rover prototype,” In: Field and Service Robotics (Howard, A., Iagnemma, K. and Kelly, A., eds.) Springer Tracts in Advanced Robotics, vol. 62 (Springer, Berlin Heidelberg, 2010) pp. 489498.CrossRefGoogle Scholar
36. Xu, H., Tan, D., Zhang, Z., Xue, K. and Jin, B. “A Reconfigurable Mobile Robot with 5th Wheel,” International Conference on Mechatronics and Automation, ICMA 2009 (2009) pp. 211–216.Google Scholar
37. Xu, H., Zhang, Z., Wu, Y. and He, L., “Contact Angle Estimation Based on Kinematics Modeling Analyses for Rover with Caster and Camber,” IEEE International Conference on Robotics and Biomimetics (ROBIO) (2010) pp. 137–142.Google Scholar
38. Yi, S. Y. J. O. K., “Coordinated control of hybrid 4wd vehicles for enhanced maneubrability and lateral stability,” IEEE Trans. Veh. Technol. 61 (4), 19461950 (2012).Google Scholar