Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-24T15:49:12.949Z Has data issue: false hasContentIssue false

Motion control of legged robots based on gradient central pattern generators

Published online by Cambridge University Press:  18 October 2024

Yihui Zhang
Affiliation:
School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
Wenshuo Liu
Affiliation:
Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China
Ning Tan*
Affiliation:
Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China
*
Corresponding author: Ning Tan; Email: [email protected]

Abstract

The design of motion control systems for legged robots has always been a challenge. This article first proposes a motion control method for legged robots based on the gradient central pattern generator (GD-CPG). The periodic signals output from the GD-CPG neural network are used as the drive signals of each thigh joint of the legged robots, which are then converted into the driving signal of the knee and ankle joints by the thigh–knee mapping function and the knee–ankle mapping function. The proposed control algorithm is adapted to quadruped and hexapod robots. To improve the ability of legged robots to cope with complex terrains, this article further proposes the responsive gradient-CPG motion control method for legged robots. From the perspective of bionics, a biological vestibular sensory feedback mechanism is established in the control system. The mechanism adjusts the robot’s motion state in real time through the attitude angle of the body measured during the robot’s motion, to keep the robot’s body stable when it moves in rugged terrains. Compared with the traditional feedback model that only balances the body pitch, this article also adds the balancing functions of body roll and yaw to balance the legged robot’s motion from more dimensions and improve the linear motion capability. This article also introduces a differential evolutionary algorithm and designs a fitness function to adaptively optimize vestibular sensory feedback parameters. The validity, robustness, and transferability of the method are verified through simulations and physical experiments.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chen, J., Liu, Y., Zhao, J., Zhang, H. and Jin, H., “Biomimetic design and optimal swing of a hexapod robot leg,” J. Bionic. Eng. 11(1), 2635 (2014).CrossRefGoogle Scholar
Zhao, Y., Chai, X., Gao, F. and Qi, C., “Obstacle avoidance and motion planning scheme for a hexapod robot octopus-iii,” Robot. Auton. Syst. 103, 199212 (2018).CrossRefGoogle Scholar
Ijspeert, A. J., “Central Pattern Generators for Locomotion Control in Animals and Robots: A Review,” In: Neural Networks, vol. 21 (Robotics and Neuroscience, 2008) pp. 642653.Google Scholar
Ostrowski, J. and Burdick, J., “Geometric Perspectives On the Mechanics and Control of Robotic Locomotion,” In: Robotics Research (Giralt, G. and Hirzinger, G., eds.) (Springer London, London, 1996) pp. 536547.CrossRefGoogle Scholar
Hogan, N. and Sternad, D., “On rhythmic and discrete movements: Reflections, definitions and implications for motor control,” Exp. Brain. Res. 181(1), 1330 (2007).CrossRefGoogle ScholarPubMed
Delcomyn, F., “Neural basis of rhythmic behavior in animals,” Science 210(4469), 492498 (1980).CrossRefGoogle ScholarPubMed
Grillner, S., “Neurobiological bases of rhythmic motor acts in vertebrates,” Science 228(4696), 143149 (1985).CrossRefGoogle ScholarPubMed
Hooper, S. L., “Central pattern generators,” Curr. Biol. 10(5), R176R179 (2000).CrossRefGoogle ScholarPubMed
Lewis, M. A. and Simo, L. S., “A Model of Visually Triggered Gait Adaptation,” Proc. of AMAM 21(3), 2350016 (2024).Google Scholar
Yu, J., Tan, M., Chen, J. and Zhang, J., “A survey on CPG-inspired control models and system implementation,” IEEE Trans. Neur. Net. Lear. Syst. 25(3), 441456 (2014).CrossRefGoogle ScholarPubMed
Zheng, H., Zhang, X., Li, T. and Duan, G., “Robot motion control method based on CPG principle,” Chinese High Technol. Lett. 13(7), 6468 (2003).Google Scholar
Liu, C., Wang, D. and Chen, Q., “Central pattern generator inspired control for adaptive walking of biped robots,” IEEE Trans. Syst. Man Cybern.: Syst. 43b(5), 12061215 (2013).Google Scholar
Wang, M., Zhang, Y. and Yu, J., “An SNN-CPG hybrid locomotion control for biomimetic robotic fish,” J. Intell. Robot. Syst. 105(2), 125 (2022).CrossRefGoogle Scholar
Yu, J., Wu, Z., Yang, X., Yang, Y. and Zhang, P., “Underwater target tracking control of an untethered robotic fish with a camera stabilizer,” IEEE Trans. Syst. Man Cybern.: Syst. 51(10), 65236534 (2021).CrossRefGoogle Scholar
Yu, H., Gao, H., Ding, L., Li, M., Deng, Z. and Liu, G., “Gait generation with smooth transition using CPG-based locomotion control for hexapod walking robot,” IEEE Trans. Ind. Electron. 63a(9), 54885500 (2016).CrossRefGoogle Scholar
Park, C.-S., Hong, Y.-D. and Kim, J.-H., “Evolutionary-optimized central pattern generator for stable modifiable bipedal walking,” IEEE/ASME Trans. Mechatron. 19(4), 13741383 (2014).CrossRefGoogle Scholar
Zhong, G., Chen, L., Jiao, Z., Li, J. and Deng, H., “Locomotion control and gait planning of a novel hexapod robot using biomimetic neurons,” IEEE Trans. Contr. Syst. Technol. 26(2), 624636 (2018).CrossRefGoogle Scholar
Du, S., Wu, Z., Wang, J., Qi, S. and Yu, J., “Design and control of a two-motor-actuated tuna-inspired robot system,” IEEE Trans. Syst. Man Cybern.: Syst. 51(8), 46704680 (2021).CrossRefGoogle Scholar
Wang, Z., Gao, Q. and Zhao, H., “CPG-inspired locomotion control for a snake robot basing on nonlinear oscillators,” J. Intell. Robot. Syst. 85(2), 209227 (2017).CrossRefGoogle Scholar
Mao, Y. and Zhang, Z., “Asymptotic frequency synchronization of kuramoto model by step force,” IEEE Trans. Syst. Man Cybern.: Syst. 50(8), 27682778 (2020).Google Scholar
Pan, J., Zhou, Z., Wang, J., Zhang, P. and Yu, J., “Development of a penguin-inspired swimming robot with air lubrication system,” IEEE Trans. Ind. Electron. 70(3), 27802789 (2023).CrossRefGoogle Scholar
Jo, J., Park, G. and Oh, Y., “Robust walking stabilization strategy of humanoid robots on uneven terrain via QP-based impedance/admittance control,” Robot. Auton. Syst. 154, 104148 (2022).CrossRefGoogle Scholar
S., YAT., “Robust walking and running gaits for biped robots with a QP-based whole-body controller,” Int. J. Hum. Robot. 2350016, 18 (2023).Google Scholar
Fazel, R., Shafei, A. and Nekoo, S., “Dynamic modeling and closed-loop control design for humanoid robotic systems: Gibbs–appell formulation and sdre approach,” Multibody. Syst. Dyn. 62(1), 5786 (2024).CrossRefGoogle Scholar
Zheng, H., Zhang, X., Cheng, Z., Zhao, L., Guan, X., Liu, P. and Tang, X., Biologically-Inspired Motion Control Theory and Its Application for a Legged-Robot (Tsinghua University Press, Beijing, 2011).Google Scholar
Zhang, X., Wang, Q., Huang, S. and Jiang, L., “A multi-model fusion based complex motion control approach for a cheetah-mimicking quadruped robot,” Robot 44(6), 682693 (2022).Google Scholar
Xu, L., Liu, W., Wang, Z. and Xu, W., “Gait Planning Method of a Hexapod Robot Based on the Central Pattern Generators: Simulation and Experiment,” In IEEE International Conference on Robotics and Biomimetics, IEEE (2013) pp. 698703.Google Scholar
Bal, C., “Neural coupled central pattern generator based smooth gait transition of a biomimetic hexapod robot,” Neurocomputing 420, 210226 (2021).CrossRefGoogle Scholar
Barron-Zambrano, J. H., Torres-Huitzil, C. and Girau, B., “Perception-driven adaptive CPG-based locomotion for hexapod robots,” Neurocomputing 170, 6378 (2015).CrossRefGoogle Scholar
Sartoretti, G., Shaw, S., Lam, K., Fan, N., Travers, M. and Choset, H., “Central Pattern Generator with Inertial Feedback for Stable Locomotion and Climbing in Unstructured Terrain,” IEEE International Conference on Robotics and Automation, IEEE (Springer Nature, 2018) pp. 57695775.CrossRefGoogle Scholar
Pérez-López, R., Espinal, A., Sotelo-Figueroa, M., Guerra-Hernandez, E. I., Batres-Mendoza, P. and Rostro-Gonzalez, H., Evolutionary Deployment of Central Pattern Generators for Legged Robots Using Nengo (Springer Nature Switzerland, Cham, 2024) pp. 141155.Google Scholar
Chen, G., Xu, Y., Yang, X., Hu, H., Cheng, H., Zhu, L., Zhang, J., Shi, J. and Chai, X., “Target tracking control of a bionic mantis shrimp robot with closed-loop central pattern generators,” Ocean. Eng. 297b, 116963 (2024).CrossRefGoogle Scholar
Wu, Y., Guo, S., Yu, Z., Wang, P., Niu, L. and Song, M., “Design of an optimized gait planning generator for a quadruped robot using the decision tree and random forest workspace model,” Robotica 41(12), 37463771 (2023).CrossRefGoogle Scholar
Chen, G., Han, Y., Li, Y., Shen, J., Tu, J., Yu, Z., Zhang, J., Cheng, H., Zhu, L. and Dong, F., “Autonomous gait switching method and experiments of a hexapod walking robot for mars environment with multiple terrains,” Intel. Serv. Robot. 17(3), 533 (2024).CrossRefGoogle Scholar
Fukui, T., Fujisawa, H., Otaka, K. and Fukuoka, Y., “Autonomous gait transition and galloping over unperceived obstacles of a quadruped robot with CPG modulated by vestibular feedback,” Robot. Auton. Syst. 111, 119 (2019).CrossRefGoogle Scholar
Fukui, T., Matsukawa, S., Habu, Y. and Fukuoka, Y., “Gait transition from pacing by a quadrupedal simulated model and robot with phase modulation by vestibular feedback,” Robotics 11(1), 6523–6534 (2022).Google Scholar
Fukuoka, Y., Habu, Y. and Fukui, T., “Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation,” Biol. Cybern. 107(6), 695710 (2013).CrossRefGoogle ScholarPubMed
Liu, C., Chen, Q. and Wang, G., “Adaptive walking control of quadruped robots based on central pattern generator (CPG) and reflex,” J. Control Theory Appl. 11a(3), 386392 (2013).CrossRefGoogle Scholar
Gay, S., Santos-Victor, J. and Ijspeert, A., “Learning Robot Gait Stability using Neural Networks as Sensory Feedback Function for Central Pattern Generators,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2013) pp. 194201.Google Scholar
Srinivas, T., Madhusudhan, A. K. K., Manohar, L., Pushpagiri, N. M. S., Ramanathan, K. C., Janardhanan, M. and Nielsen, I., “Valkyrie–design and development of gaits for quadruped robot using particle swarm optimization,” Appl. Sci. 11(16), 7458 (2021).CrossRefGoogle Scholar
Wang, M., Dong, H., Li, X., Zhang, Y. and Yu, J., “Control and optimization of a bionic robotic fish through a combination of CPG model and PSO,” Neurocomputing 337a, 144152 (2019).CrossRefGoogle Scholar
Wang, S., Shi, Q., Gao, J., Wang, Y., Meng, F., Li, C., Huang, Q. and Fukuda, T., “Design and Control of a Miniature Quadruped Rat-Inspired Robot,” 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Tokyo, Japan, IEEE (2019) pp. 346351.Google Scholar
Yu, J., Wu, Z., Wang, M. and Tan, M., “CPG network optimization for a biomimetic robotic fish via PSO,” IEEE Trans. Neur. Net. Lear. Syst. 27b(9), 19621968 (2016).CrossRefGoogle Scholar
Hu, Y., Liang, J. and Wang, T., “Parameter synthesis of coupled nonlinear oscillators for CPG-based robotic locomotion,” IEEE Trans. Ind. Electron. 61(11), 61836191 (2014).CrossRefGoogle Scholar
Farzaneh, Y., Akbarzadeh, A. and Akbari, A. A., “New automated learning CPG for rhythmic patterns,” Intel. Serv. Robot. 5(3), 169177 (2012).CrossRefGoogle Scholar
Bing, Z., Cheng, L., Chen, G., Röhrbein, F., Huang, K. and Knoll, A., “Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot,” Bioinspir. Biomim. 12a(3), 035001 (2017).CrossRefGoogle Scholar
Bing, Z., Cheng, L., Huang, K., Zhou, M. and Knoll, A., “CPG-Based Control of Smooth Transition for Body Shape and Locomotion Speed of a Snake-like Robot,” In 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE (Springer Nature, 2017) pp. 41464153.CrossRefGoogle Scholar
Pearlmutter, B. A., “Gradient calculations for dynamic recurrent neural networks: a survey,” IEEE Trans. Neur. Net. 6(5), 12121228 (1995).CrossRefGoogle ScholarPubMed
Li, P., Research On Gait of Hexapod Robot Based On Cpg and Reinforcement Learning Master’s thesis (Hangzhou Dianzi University, 2022).Google Scholar
Bai, C., Optimal Design of the Parallel Leg Mechanism and CPG Based Locomotion Control for a Quadruped Robot Master’s thesis (Harbin Institute of Technology, 2021).Google Scholar
Storn, R. and Price, K., “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341359 (1997).CrossRefGoogle Scholar
Liu, J., Intelligent Control (IEEE, 2021).Google Scholar