Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T02:48:40.310Z Has data issue: false hasContentIssue false

Modelling the temperature in joint friction of industrial manipulators

Published online by Cambridge University Press:  10 November 2017

Luca Simoni
Affiliation:
Dipartimento di Ingegneria Meccanica e Industriale, University of Brescia, Via Branze 38, I-25123 Brescia, Italy. E-mails: [email protected], [email protected]
Manuel Beschi
Affiliation:
Istituto di Tecnologie Industriali e Automazione, National Research Council (ITIA-CNR), Via Corti 12, I-20133 Milan, Italy. E-mail: [email protected]
Giovanni Legnani
Affiliation:
Dipartimento di Ingegneria Meccanica e Industriale, University of Brescia, Via Branze 38, I-25123 Brescia, Italy. E-mails: [email protected], [email protected]
Antonio Visioli*
Affiliation:
Dipartimento di Ingegneria Meccanica e Industriale, University of Brescia, Via Branze 38, I-25123 Brescia, Italy. E-mails: [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

In this paper, a new model for joint dynamic friction of industrial robot manipulators is presented. In particular, the effects of the temperature in the joints are considered. A polynomial-based model is proposed and the parameter estimation is performed without the need of a joint temperature sensor. The use of an observer is then proposed to compensate for the uncertainty in the initial estimation of the temperature value. A large experimental campaign show that the model, in spite of the simplifying assumptions made, is effective in estimating the joint temperature and therefore the friction torque during the robot operations, even for values of velocities that have not been previously employed.

Type
Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åström, K. J. and de Wit, C. Canudas, “Revisiting the lugre model,” IEEE Control Syst. Mag. 28 (6), 101114 (2008).Google Scholar
Åström, K. J., de Wit, C. Canudas, Olsson, H. and Lischinsky, P., “A new model for control of systems with friction,” IEEE Trans. Autom. Control 40 (3), 419425 (1995).Google Scholar
Åström, K. J., de Wit, C. Canudas, Olsson, H., Lischinsky, P. and Gäfvert, P., “Friction models and friction compensation,” Eur. J. Control 4 (3), 176195 (1998).Google Scholar
Carvalho Bittencourt, A. and Axelsson, P., “Modeling and experiment design for identification of wear in a robot joint under load and temperature uncertainties based on friction data,” IEEE/ASME Trans. Mechatron. 19 (5), 16941706 (2014).Google Scholar
Carvalho Bittencourt, A. and Gunnarsson, S., “Static friction in a robot joint–-modeling and identification of load and temperature effects,” J. Dyn. Syst. Meas. Control 134 (5), 051013 (2012).CrossRefGoogle Scholar
Carvalho Bittencourt, A., Wernholt, E., Sander-Tavallaey, S. and Brogardh, T., “An Extended Friction Model to Capture Load and Temperature Effects in Robot Joints,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei (Taiwan) (2010) pp. 6161–6167.Google Scholar
Bona, B. and Indri, M., “Friction Compensation in Robotics: An Overview,” Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, Seville (E) (2005) pp. 4360–4367.Google Scholar
Carlson, F. B., Robertsson, A. and Johansson, R., “Modeling and Identification of Position and Temperature Dependent Friction Phenomena without Temperature Sensing,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg (D) (2015) pp. 3045–3051.Google Scholar
Dahl, P. R., “A solid friction model,” Technical Report ADA041920, Space and Missile Systems Organization, Air Force System Command, Los Angeles, CA (USA) (1968).Google Scholar
Dankowicz, H., “On the modeling of dynamic friction phenomena,” ZAMM – J. Appl. Math. Mech. 79 (6), 399409 (1999).3.0.CO;2-K>CrossRefGoogle Scholar
Ferretti, G., Magnani, G. and Rocco, P., “Single and multistage integral friction models,” IEEE Trans. Autom. Control 49 (12), 22922297, 2004.CrossRefGoogle Scholar
Freidovich, L., Robertsson, A., Shiriaev, A. and Johansson, R., “Lugre-model-based friction compensation,” IEEE Trans. Control Syst. Technol. 18 (1), 194200 (2010).CrossRefGoogle Scholar
Ge, S. S., Lee, T. H. and Ren, S. X., “Adaptive friction compensation of servo mechanisms,” Int. J. Syst. Sci. 32, 523532 (2001).CrossRefGoogle Scholar
Gervini, V. I., Hemerly, E. M. and Gomes, S. C. P., “Active control of flexible one-link manipulators using wavelet networks,” Robotica 31, 12751283 (2013).CrossRefGoogle Scholar
Han, S. I., Lee, K. S., Park, M. G. and Lee, J. M., “Robust adaptive deadzone and friction compensation of robot manipulator using RWCMAC network,” J. Mech. Sci. Technol. 25, 15831594 (2011).CrossRefGoogle Scholar
Janot, A., Vandanjon, P.-O. and Gautier, M., “A generic instrumental variable approach for industrial robot identification,” IEEE Trans. Control Syst. Technol. 22 (1), 132145 (2014).CrossRefGoogle Scholar
Jatta, F., Legnani, G. and Visioli, A., “Friction compensation in hybrid force/velocity control of industrial manipulators,” IEEE Trans. Ind. Electron. 53 (2), 604613, 2006.CrossRefGoogle Scholar
Kennedy, F. E., “Frictional Heating and Contact Temperatures,” In: Modern Tribology Handbook (Bhushan, B., ed.), chapter 6 (CRC Press, Boca Raton, FL, 2001).Google Scholar
Lampaert, L., Swevers, J. and Al-Bender, F., “An integrated friction model structure with improved presliding behaviour for accurate friction compensation,” IEEE Trans. Autom. Control 40, 675686 (2000).Google Scholar
Lampaert, V., Al-Bender, F. and Swevers, J., “A Generalized Maxwell-Slip Friction Model Appropriate for Control Purposes,” Proceedings of the IEEE International Conference on Physics and Control, volume 4, St. Petersburg (Russia) (2003) pp. 1170–1177.Google Scholar
Márton, L. and van der Linden, F., “Temperature dependent friction estimation: Application to lubricant health monitoring,” Mechatronics 22, 10781084 (2012).CrossRefGoogle Scholar
Neubauer, M., Gattringer, H. and Bremer, H., “A persistent method for parameter identification of a seven-axes manipulator,” Robotica 33, 10991112 (2015).CrossRefGoogle Scholar
Piatkovsky, T., “Dahl and lugre dynamic friction models – the analysis of selected properties,” Mech. Mach. Theory 73, 91100 (2014).Google Scholar
Piatkovsky, T., “Gms friction model approximation,” Mech. Mach. Theory 75, 111 (2014).Google Scholar
Pirro, D. M., Webster, M. and Daschner, E., Lubrication Fundamentals, Revised and Expanded (CRC Press, Boca Raton, FL, 2016).CrossRefGoogle Scholar
Ruderman, M., “Presliding hysteresis damping of lugre and maxwell-slip friction models,” Mechatronics 30, 225230 (2015).CrossRefGoogle Scholar
Sanxiu, W. and Shengtao, J., “Adaptive Friction Compensation of Robot Manipulator,” In: Electronics and Signal Processing (Hu, W., ed.) (2011) pp. 127–134.Google Scholar
Simoni, L., Beschi, M., Legnani, G. and Visioli, A., “Friction Modeling with Temperature Effects for Industrial Robot Manipulators,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg (D) (2015), pp. 3524–3529.Google Scholar
Stolt, A., Carlson, F. B., Ghazaei Ardakani, M. M., Lundberg, I., Robertsson, A. and Johansson, R., “Sensorless Friction-Compensated Passive Lead-Through Programming for Industrial Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg (D) (2015), pp. 3530–3537.Google Scholar
Sun, Y.-H., Chen, T., Wu, C. Q. and Shafai, C., “A comprehensive experimental setup for identification of friction model parameters,” Mech. Mach. Theor. 100, 338357 (2016).CrossRefGoogle Scholar
Swevers, J., Al-Bender, F., Ganseman, C. G. and Prajogo, T., “Modification of the leuven integrated friction model structure friction models,” IEEE Trans. Autom. Control 47, 683687 (2002).Google Scholar
van Geffen, V., “A study of friction models and friction compensation,” Technical Report DCT 2009.118, Technische Universiteit Eindhoven, Department Mechanical Engineering, Dynamics and Control Technology Group, Eindhoven (NL) (2009).Google Scholar
Villagrossi, E., Legnani, G., Pedrocchi, N., Vicentini, F., Tosatti, L. M., Abbà, F. and Bottero, A., “Robot Dynamic Model Identification through Excitation Trajectories Minimizing the Correlation Influence Among Essential Parameters,” Proceedings of the 11th IEEE Conference on Informatics in Control, Automation and Robotics, Vienna (A) (2014), pp. 475–482.Google Scholar
Villagrossi, E., Pedrocchi, N., Vicentini, F. and Tosatti, L. Molinari, “Optimal Robot Dynamics Local Identification using Genetic-Based Path Planning in Workspace Subregions,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong (AUS) (2013) pp. 932–937.Google Scholar
Visioli, A. and Legnani, G., “On the trajectory tracking control of industrial SCARA robot manipulators,” IEEE Trans. Ind. Electron. 49 (1), 224232, 2002.CrossRefGoogle Scholar
Yoon, J. Y. and Trumper, D. L., “Friction modeling, identification, and compensation based on friction hysteresis and dahl resonance,” Mechatronics 24, 734741 (2014).CrossRefGoogle Scholar
Zhongyu, Z., The Study of Friction Variation with Temperature in a Harmonic Drive System - Modeling and Control Master's Thesis, Concordia University, Montreal (CA) (2006).Google Scholar