Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T08:39:23.586Z Has data issue: false hasContentIssue false

Modeling and friction estimation for wheeled omnidirectional mobile robots

Published online by Cambridge University Press:  12 February 2015

Andre G. S. Conceicao*
Affiliation:
LaR- Robotics Lab and Department of Electrical Engineering, Federal University of Bahia, Rua Aristides Novis, 02, 40210-630, Salvador, BA, Brazil E-mails: [email protected], [email protected], [email protected]
Mariane D. Correia
Affiliation:
LaR- Robotics Lab and Department of Electrical Engineering, Federal University of Bahia, Rua Aristides Novis, 02, 40210-630, Salvador, BA, Brazil E-mails: [email protected], [email protected], [email protected]
Luciana Martinez
Affiliation:
LaR- Robotics Lab and Department of Electrical Engineering, Federal University of Bahia, Rua Aristides Novis, 02, 40210-630, Salvador, BA, Brazil E-mails: [email protected], [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

In this study, a model for wheeled mobile robots that includes a static friction model in the force balance at the robot's center of mass is presented. Additionally, a least-squares method to linearly combine functions is proposed to estimate the friction coefficients. The experimental and simulation results are discussed to demonstrate the effectiveness of this approach in indoor environments for two floor types.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mehmood, A., Laghrouche, S., Bagdouri, M. El and Ahmed, F. S., “Sensitivity Analysis of LuGre Friction Model for Pneumatic Actuator Control,” IEEE Vehicle Power and Propulsion Conference (VPPC) (2010) pp. 1–6, DOI: 10.1109/VPPC.2010.5729116.CrossRefGoogle Scholar
2. Jia, Z., Smith, W. and Peng, H., “Fast analytical models of wheeled locomotion in deformable terrain for mobile robots,” Robotica 31, 3553 (2013), DOI: 10.1017/S0263574712000069.Google Scholar
3. Barreto S., J. C. L., Conceicao, A. G. S., Dorea, C. E. T., Martinez, L. and de Pieri, E. R., “Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot,” IEEE/ASME Trans. Mechatronics PP (99), 110 (2013), DOI: 10.1109/TMECH.2013.2243161.Google Scholar
4. Nascimento, T. P., Conceição, A. G. S. and Moreira, A. P.. “Multi-robot nonlinear model predictive formation control: The obstacle avoidance problem,” Robotica (2014) pp. 1–19, DOI: 10.1017/S0263574714001696.Google Scholar
5. Lee, T. H., Tan, K. K. and Huang, S., “Adaptive friction compensation with a dynamical friction model,” IEEE/ASME Trans. Mechatronics 16 (1), 133140 (2011), DOI: 10.1109/TMECH.2009.2036994.Google Scholar
6. Shojaei, K., “Saturated output feedback control of uncertain nonholonomic wheeled mobile robots,” Robotica 33 (1), 87105 (2015), DOI: 10.1017/S0263574714000046.Google Scholar
7. Kashiwazaki, K., Yonezawa, N., Endo, M., Kosuge, K., Sugahara, Y., Hirata, Y., Kanbayashi, T., Suzuki, K., Murakami, K. and Nakamura, K., “A Car Transportation System using Multiple Mobile Robots: iCART II,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2011) pp. 4593–4600, DOI: 10.1109/IROS.2011.6094889.Google Scholar
8. Conceicao, A. G. S., Moreira, A. and Costa, P., “Practical approach of modeling and parameters estimation for omnidirectional mobile robots,” IEEE/ASME Trans. Mechatronics, 14, 377381 (2009), DOI: 10.1109/TMECH.2009.2013615.Google Scholar
9. Chen, Y., Liu, Q. and Ren, T., “A simple and novel helical drive in-pipe robot,” Robotica (2014) pp. 1–13, DOI: 10.1017/S0263574714000599.Google Scholar
10. Bayar, G., Koku, A. B. and Konukseven, E. I., “Dynamic modeling and parameter estimation for traction, rolling, and lateral wheel forces to enhance mobile robot trajectory tracking,” Robotica (2014) pp. 1–17, DOI: 10.1017/S0263574714001386.CrossRefGoogle Scholar
11. Maxon Motor. Available on http://www.maxonmotor.com/.Google Scholar
12. Oliveira, H. P., Sousa, A. J., Moreira, A. P. and Costa, P. J., “Modeling and Assessing of Omni-directional Robots with Three and Four Wheels,” Contemporary Robotics - Challenges and Solutions (2009) pp. 207–229.Google Scholar
13. Olsson, H., Astrom, K. J., de Wit, C. Canudas, Gafvert, M. and Lischinsky, P., “Friction models and friction compensation,” Eur. J. Control 4, 176195 (1998).Google Scholar
14. Bona, B. and Indri, M., “Friction Compensation in Robotics: An Overview,” Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC'05) (2005) pp. 4360–4367, DOI: 10.1109/CDC.2005.1582848.Google Scholar