Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T06:34:14.902Z Has data issue: false hasContentIssue false

A model independent observer based output feedback tracking controller for robotic manipulators with dynamical uncertainties

Published online by Cambridge University Press:  05 October 2015

Erkan Zergeroglu*
Affiliation:
Department of Computer Engineering, Gebze Institute of Technology, 41400, Gebze, Kocaeli, Turkey. E-mail: [email protected]
Enver Tatlicioglu
Affiliation:
Department of Electrical & Electronics Engineering, Izmir Institute of Technology, Gulbahce Koyu, Urla, Izmir, 35430Turkey. E-mail: [email protected]
Egemen Kaleli
Affiliation:
Department of Computer Engineering, Gebze Institute of Technology, 41400, Gebze, Kocaeli, Turkey. E-mail: [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

In this work, we propose the development and the corresponding stability analysis of a novel, observer-based output feedback (OFB), tracking controller for rigid-link robot manipulators. Specifically, a model-independent variable-structure-like observer in conjunction with a desired dynamic compensation technique have been utilized to remove the link velocity dependency of the controller formulation. Asymptotic stability of the observer--controller couple is then guaranteed via Lyapunov-based arguments. An adaptive controller extension is also presented to illustrate the expansiveness of the proposed scheme. Experimental studies performed on a two-link planar robot with dynamical uncertainties are included in order to demonstrate the performance and feasibility of the proposed method.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arimoto, S., Parra-Vega, V. and Naniwa, T., “A Class of Linear Velocity Observers for Nonlinear Mechanical Systems,” Proceedings of the Asian Control Conference, Tokyo, Japan (1994) pp. 633–636.Google Scholar
2. Berghuis, H. and Nijmeijer, H., “A passivity approach to controller-observer design for robots,” IEEE Trans. Robot. Autom. 9 (6), 740754 (1993).Google Scholar
3. Burg, T. C., Dawson, D. M. and Vedagarbha, P., “A redesigned DCAL controller without velocity measurements: Theory and demonstration,” Robotica 15, 337346 (1997).Google Scholar
4. Zergeroglu, E., Dixon, W. E., Haste, D. and Dawson, D. M., “A composite adaptive output feedback tracking controller for robotic manipulators,” Robotica 17, 591600 (1999).CrossRefGoogle Scholar
5. Yuan, J. and Stepanenko, Y., “Robust control of robotic manipulators without velocity measurements,” Int. J. Robust Nonlinear Control 1, 203213 (1991).Google Scholar
6. Zhang, F., Dawson, D. M., de Queiroz, M. S. and Dixon, W. E., “Global adaptive output feedback control of robot manipulators,” IEEE Trans. Autom. Control 45 (6), 2031208 (2000).CrossRefGoogle Scholar
7. Zergeroglu, E., Dawson, D. M., de Queiroz, M. S. and Krstic, M., “On global output feedback control of robot manipulators,” IEEE International Conference on Decision and Control, Sydney, Australia (2000) pp. 5073–5078.Google Scholar
8. Nicosia, S. and Tomei, P., “Robot control by using only position measurements,” IEEE Trans. Autom. Control 35 (9), 10581061 (1990).CrossRefGoogle Scholar
9. Canudas de Wit, C. and Slotine, J., “Sliding observers for robot manipulators,” Automatica 27 (5), 859864 (1991).Google Scholar
10. Oh, S. and Khalil, H. K., “Output feedback stabilization using variable structure control,” Int. J. Control 62 (4), 831848 (1995).Google Scholar
11. Abdessameud, A. and Khelfi, M. F., “A variable structure observer for the control of robot manipulators,” Int. J. Appl. Math. Compt. Sci. 16 (2), 189196 (2006).Google Scholar
12. Xian, B., de Queiroz, M. S., Dawson, D. M. and McIntyre, M. L., Output Feedback Variable Structure-like Control of Nonlinear Mechanical Systems,” Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HA, USA (2003) pp. 368–373.Google Scholar
13. Lewis, F. L., Abdallah, C. T. and Dawson, D. M., Control of Robot Manipulators (Macmillan Publishing Co., New York, USA, 1993).Google Scholar
14. Tomei, P., “Adaptive PD controller for robot manipulators,” IEEE Trans. Robot. Autom. 7 (4), 565570 (1991).Google Scholar
15. Zergeroglu, E. and Tatlicioglu, E., “Observer Based Output Feedback Control of Robotic Manipulators,” IEEE International Conference on Control Applications, Yokohama, Japan (2010) pp. 602–607.Google Scholar
16. Zergeroglu, E. and Tatlicioglu, E., “Observer Based Adaptive Output Feedback Control of Robotic Manipulators,” IEEE International Conference on Decision and Control, Atlanta, GA, USA (2010) pp. 3638–3643.Google Scholar
17. Sadegh, N. and Horowitz, R., “Stability and robustness analysis of a class of adaptive controllers for robot manipulators,” Int. J. Robot. Res. 9 (3), 7492 (1990).CrossRefGoogle Scholar
18. Xian, B., Dawson, D. M., deQueiroz, M. S. and Chen, J., “A continuous asymptotic tracking control strategy for uncertain nonlinear systems,” IEEE Trans. Autom. Control 47 (7), 12061211 (2004).CrossRefGoogle Scholar
19. Krstic, M., Kanellakopoulos, I. and Kokotovic, P., Nonlinear and Adaptive Control Design (John Wiley & Sons, New York, USA, 1995).Google Scholar
20. Khalil, H. K., Nonlinear Systems, 3rd ed. (Prentice Hall, New York, USA, 2002).Google Scholar
21. Direct Drive Manipulator Research and Development Package Operations Manual (Integrated Motion Inc., Berkeley, CA, USA, 1992).Google Scholar
22. Ay, C., Karakucuk, H., Kaleli, E. and Zergeroglu, E., “Zenom: A Linux/Xenomai based Real Time Controller Implementation Platform,” Proceedings of the 2014 Turkish Automatic Control Conference (TOK 2014), Kocaeli, Turkey (2014) pp. 201–206 (in Turkish).Google Scholar