Article contents
Locomotion control of a hydraulically actuated hexapod robot by robust adaptive fuzzy control and dead-zone compensation
Published online by Cambridge University Press: 01 May 2006
Summary
This investigation presents locomotion control of a hydraulically actuated six-legged humanitarian demining robot by robust adaptive fuzzy control in conjunction with the dead zone compensation technique within independent joint control framework. For proper locomotion of the demining robot, accurate tracking of the desired joint trajectory is very important. However, high degree of nonlinearity, the uncertainties due to changing hydraulic properties, and delay due to the flow of oil and dead zone of the proportional electromagnetic control valve results into an inaccurate plant model for the hydraulically actuated robotic joints. Consequently, model-based classical control techniques result into a large tracking error. Therefore, adaptive fuzzy control technique, being a model independent control paradigm for complex and uncertain systems, is a good choice for such systems. In this work, a hydraulic dead zone compensated robust adaptive fuzzy control law has been proposed for locomotion control of hydraulically actuated hexapod demining robot. The experimental results exhibit a fairly accurate trajectory tracking of the leg joints and, consequently, very stable locomotion of the walking robot.
Keywords
- Type
- Article
- Information
- Copyright
- Copyright © Cambridge University Press 2006
References
- 5
- Cited by