Published online by Cambridge University Press: 01 May 2014
Three-dimensional (3D) data processing has applications in solving complex tasks such as object recognition, environment modeling, and robotic mapping and localization. Because using raw 3D data without preprocessing is very time-consuming, extraction of geometric features that describe the environment concisely is essential. In this sense, a plane can be a suitable geometric feature due to its simplicity of extraction and the abundance in indoor environments. This paper presents an online incremental plane extraction method using line segments for indoor environments. Our data collection system is based on a “nodding” laser scanner, so we exploit the incremental nature of its data acquisition in which physical rotation and 3D data processing are conducted in parallel. Line segments defined by two end points become supporting elements that comprise a plane, so a large proportion of scan points can be ignored once the line segments are extracted from each scan slice. This elimination of points reduces the algorithm complexity and computation time. Experiments with the tens of complete scan data sets which were acquired from a typical indoor environment demonstrated that our method was at least three times faster than the state-of-the-art methods.