Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-25T04:12:41.163Z Has data issue: false hasContentIssue false

Lie-theory-based dynamic model identification of serial robots considering nonlinear friction and optimal excitation trajectory

Published online by Cambridge University Press:  16 October 2024

Ruiqing Luo
Affiliation:
Shanghai Robotics Institute, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
Jianjun Yuan
Affiliation:
Shanghai Robotics Institute, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
Zhengtao Hu
Affiliation:
Shanghai Robotics Institute, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
Liang Du
Affiliation:
Shanghai Robotics Institute, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
Sheng Bao*
Affiliation:
Shanghai Robotics Institute, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
Meijie Zhou
Affiliation:
Shanghai Robotics Institute, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China Shanghai Robot Industrial Technology Institute, Shanghai, China
*
Corresponding author: Sheng Bao; Email: [email protected]

Abstract

Accurate dynamic model is essential for the model-based control of robotic systems. However, on the one hand, the nonlinearity of the friction is seldom treated in robot dynamics. On the other hand, few of the previous studies reasonably balance the calculation time-consuming and the quality for the excitation trajectory optimization. To address these challenges, this article gives a Lie-theory-based dynamic modeling scheme of multi-degree-of-freedom (DoF) serial robots involving nonlinear friction and excitation trajectory optimization. First, we introduce two coefficients to describe the Stribeck characteristics of Coulomb and static friction and consider the dependency of friction on load torque, so as to propose an improved Stribeck friction model. Whereafter, the improved friction model is simplified in a no-load scenario, a novel nonlinear dynamic model is linearized to capture the features of viscous friction across the entire velocity range. Additionally, a new optimization algorithm of excitation trajectories is presented considering the benefits of three different optimization criteria to design the optimal excitation trajectory. On the basis of the above, we retrieve a feasible dynamic parameter set of serial robots through the hybrid least square algorithm. Finally, our research is supported by simulation and experimental analyses of different combinations on the seven-DoF Franka Emika robot. The results show that the proposed friction has better accuracy performance, and the modified optimization algorithm can reduce the overall time required for the optimization process while maintaining the quality of the identification results.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Atkeson, C. G., An, C. H. and Hollerbach, J. M., “Estimation of inertial parameters of manipulator loads and links,” Intl. J. Robot. Research 5(3), 101119 (1986).CrossRefGoogle Scholar
Ayusawa, K., Venture, G. and Nakamura, Y.. “Identification of humanoid robots dynamics using floating-base motion dynamics,” In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2008) pp. 28542859.Google Scholar
Bonnet, V., Fraisse, P., Crosnier, A., Gautier, M., González, A. and Venture, G., “Optimal exciting dance for identifying inertial parameters of an anthropomorphic structure,” IEEE Trans. Robot. 32(4), 823836 (2016).CrossRefGoogle Scholar
Calafiore, G., Indri, M. and Bona, B., “Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation,” J. Robot. Sys. 18(2), 5568 (2001).3.0.CO;2-O>CrossRefGoogle Scholar
Dong, J., Xu, J., Zhou, Q., Zhu, J. and Yu, L., “Dynamic identification of industrial robot based on nonlinear friction model and ls-sos algorithm,” IEEE Trans. Instrum. Meas. 70, 112 (2021).Google Scholar
Fu, Z., Pan, J., Spyrakos-Papastavridis, E., Lin, Y. H., Zhou, X., Chen, X. and Dai, J. S., “A lie-theory-based dynamic parameter identification methodology for serial manipulators,” IEEE/ASME Trans. Mech. 26(5), 26882699 (2020).CrossRefGoogle Scholar
Gao, L., Yuan, J., Han, Z., Wang, S. and Wang, N.. “A Friction Model with Velocity, Temperature and Load Torque Effects for Collaborative Industrial Robot Joints,” In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (2017) pp. 30273032.Google Scholar
Gautier, M. and Briot, S.. “Dynamic parameter identification of a 6 dof industrial robot using power model,” In: 2013 IEEE International Conference on Robotics and Automation., IEEE (2013) pp. 29142920.Google Scholar
Gautier, M. and Khalil, W., “Direct calculation of minimum set of inertial parameters of serial robots,” IEEE Trans. Robot. Autom. 6(3), 368373 (1990).CrossRefGoogle Scholar
Gautier, M. and Venture, G.. “Identification of Standard Dynamic Parameters of Robots with Positive Definite Inertia Matrix,” In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems., IEEE (2013) pp. 58155820.Google Scholar
Gaz, C., Cognetti, M., Oliva, A., Giordano, P. R. and De Luca, A., “Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using penalty-based optimization,” IEEE Robot. Auto. Lett. 4(4), 41474154 (2019).CrossRefGoogle Scholar
Hamon, P., Gautier, M. and Garrec, P.. “Dynamic identification of robots with a dry friction model depending on load and velocity,” In: 2010 IEEE/RSJ international conference on intelligent robots and systems., IEEE (2010) pp. 61876193.Google Scholar
Han, Y., Wu, J., Liu, C. and Xiong, Z., “An iterative approach for accurate dynamic model identification of industrial robots,” IEEE Trans. Robot. 36(5), 15771594 (2020).CrossRefGoogle Scholar
He, Y., Wang, C., Bao, S., Yuan, J., Du, L., Ma, S. and Wan, W.. “A joint friction model of robotic manipulator for low-speed motion,” In: 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO)., IEEE (2021) pp. 545550.Google Scholar
Huang, Y., Ke, J., Zhang, X. and Ota, J., “Dynamic parameter identification of serial robots using a hybrid approach,” IEEE Trans. Robot. 39(2), 16071621 (2022).CrossRefGoogle Scholar
Iskandar, M. and Wolf, S.. “Dynamic Friction Model with Thermal and Load Dependency: Modeling, Compensation, and External Force Estimation,” In: 2019 International Conference on Robotics and Automation (ICRA), IEEE (2019) pp. 73677373.Google Scholar
Jia, J., Zhang, M., Li, C., Gao, C., Zang, X. and Zhao, J., “Improved dynamic parameter identification method relying on proprioception for manipulators,” Nonlinear Dyn. 105(2), 13731388 (2021).CrossRefGoogle Scholar
Jin, J. and Gans, N., “Parameter identification for industrial robots with a fast and robust trajectory design approach,” Robot. Cim-Integr. Manuf. 31, 2129 (2015).CrossRefGoogle Scholar
Khalil, W. and Bennis, F., “Comments on direct calculation of minimum set of inertial parameters of serial robots,” IEEE Trans. Robotic. Autom. 10(1), 7879 (1994).CrossRefGoogle Scholar
Lee, T. and Park, F. C., “A geometric algorithm for robust multibody inertial parameter identification,” IEEE Robot. Auto. Lett. 3(3), 24552462 (2018).CrossRefGoogle Scholar
Li, Z., Wei, H., Liu, C., He, Y., Liu, G., Zhang, H. and Li, W., “An improved iterative approach with a comprehensive friction model for identifying dynamic parameters of collaborative robots,” Robotica 42(5), 123 (2024).CrossRefGoogle Scholar
Liu, S., Ma, Z., Chen, J.-L., Cao, J.-F., Fu, Y. and qi Li, S., “An improved parameter identification method of redundant manipulator,” Int. J. Adv. Robot. Syst. 18(2), 172988142110021 (2021).CrossRefGoogle Scholar
Luo, R., Bao, S., Du, L., Hu, Z., Liu, Y. and Yuan, J.. “Optimal Exciting Trajectories for Identifying Dynamic Parameters of Serial Robots,” In: 2023 IEEE International Conference on Mechatronics and Automation (ICMA), IEEE, (2023a) pp. 10091014.CrossRefGoogle Scholar
Luo, R., Bao, S., Du, L., Hu, Z., Liu, Y. and Yuan, J.. “Optimal Exciting Trajectories for Identifying Dynamic Parameters of Serial Robots,” In: 2023 IEEE International Conference on Mechatronics and Automation (ICMA), IEEE, (2024b) pp.10091014.CrossRefGoogle Scholar
Madsen, E., Rosenlund, O. S., Brandt, D. and Zhang, X., “Comprehensive modeling and identification of nonlinear joint dynamics for collaborative industrial robot manipulators,” Ctrl. Eng. Pract. 101, 111 (2020).Google Scholar
Madsen, E., Rosenlund, O. S., Brandt, D. and Zhang, X., “Adaptive feedforward control of a collaborative industrial robot manipulator using a novel extension of the generalized maxwell-slip friction model,” Mech. Mach. Theor. 155, 104109 (2021).CrossRefGoogle Scholar
Park, F. C., Bobrow, J. E. and Ploen, S. R., “A lie group formulation of robot dynamics,” Intl. J. Robot. Res. 14(6), 609618 (1995).CrossRefGoogle Scholar
Presse, C. and Gautier, M.. “New Criteria of Exciting Trajectories for Robot Identification,” In: [1993] Proceedings IEEE International Conference on Robotics and Automation, IEEE (1993) pp. 907912.Google Scholar
Roveda, L., Bussolan, A., Braghin, F. and Piga, D., “Robot joint friction compensation learning enhanced by 6d virtual sensor,” Int. J. Robust Nonlin. 32(9), 57415763 (2022).CrossRefGoogle Scholar
Roy, B. and Asada, H. H., “Nonlinear feedback control of a gravity-assisted underactuated manipulator with application to aircraft assembly,” IEEE Trans. Robot. 25(5), 11251133 (2009).CrossRefGoogle Scholar
Simoni, L., Beschi, M., Legnani, G. and Visioli, A.. “Friction Modeling with Temperature Effects for Industrial Robot Manipulators,” In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (2015) pp. 35243529.Google Scholar
Sousa, C. D. and Cortesao, R., “Inertia tensor properties in robot dynamics identification: A linear matrix inequality approach,” IEEE/ASME Trans. Mecha. 24(1), 406411 (2019).CrossRefGoogle Scholar
Swevers, J., Ganseman, C., Tukel, D. B., De Schutter, J. and Van Brussel, H., “Optimal robot excitation and identification,” IEEE Trans. Robotic. Autom. 13(5), 730740 (1997).CrossRefGoogle Scholar
Swevers, J., Verdonck, W. and De Schutter, J., “Dynamic model identification for industrial robots,” IEEE Ctrl. Sys. Mag. 27(5), 5871 (2007).Google Scholar
Tustin, A., “The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems,” J. Inst. Electr. Eng. Part IIA: Auto. Reg. Servo Mech. 94(1), 143151 (1947).Google Scholar
Vantilt, J., Aertbeliën, E., De Groote, F. and De Schutter, J.. “Optimal Excitation and Identification of the Dynamic Model of Robotic Systems with Compliant Actuators,” In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2015) pp. 21172124.Google Scholar
Wahrburg, A., Klose, S., Clever, D., Groth, T., Moberg, S., Styrud, J. and Ding, H.. “Modeling Speed-, Load-, and Position-dependent Friction Effects in Strain Wave Gears,” In: 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2018) pp. 20952102.Google Scholar
Wensing, P. M., Kim, S. and Slotine, J. J. E., “Linear matrix inequalities for physically consistent inertial parameter identification: A statistical perspective on the mass distribution,” IEEE Robot. Auto. Lett. 3(1), 6067 (2017).CrossRefGoogle Scholar
Wolf, S. and Iskandar, M.. “Extending a dynamic friction model with nonlinear viscous and thermal dependency for a motor and harmonic drive gear,” In: 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2018) pp. 783790.Google Scholar
Wu, J., Li, W. and Xiong, Z., “Identification of robot dynamic model and joint frictions using a baseplate force sensor,” Sci. China Techno. Sci. 65(1), 3040 (2022).Google Scholar
Wu, J., Wang, J. and You, Z., “An overview of dynamic parameter identification of robots,” Robot. Com-Integr. Manuf. 26(5), 414419 (2010).CrossRefGoogle Scholar
Wu, W., Zhu, S., Wang, X. and Liu, H., “Closed-loop dynamic parameter identification of robot manipulators using modified fourier series,” Int. J. Adv. Robot. Syst. 9(1), 29 (2012).CrossRefGoogle Scholar
Xu, T., Fan, J., Fang, Q., Zhu, Y. and Zhao, J., “An accurate identification method based on double weighting for inertial parameters of robot payloads,” Robotica 40(12), 43584374 (2022).CrossRefGoogle Scholar
Yang, K., Yang, W. and Wang, C., “Inverse dynamic analysis and position error evaluation of the heavy-duty industrial robot with elastic joints: An efficient approach based on lie group,” Nonlinear Dyn. 93(2), 487504 (2018).CrossRefGoogle Scholar
Zhang, S., Wang, S., Jing, F. and Tan, M., “A sensorless hand guiding scheme based on model identification and control for industrial robot,” IEEE Trans. Ind. Inform. 15(9), 52045213 (2019).CrossRefGoogle Scholar