Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T14:54:23.121Z Has data issue: false hasContentIssue false

Kinematic modeling and control for human-robot cooperation considering different interaction roles

Published online by Cambridge University Press:  28 February 2014

B. V. Adorno*
Affiliation:
Department of Electrical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31270-010, Belo Horizonte, MG, Brazil
A. P. L. Bó
Affiliation:
Universidade de Brasília, LARA, Caixa Postal 4386, 70919-970 Brasília-DF, Brazil
P. Fraisse
Affiliation:
Université Montpellier 2, LIRMM, 161 rue Ada, 34095 Montpellier, France
*
*Corresponding author. E-mail: [email protected]

Summary

This paper presents a novel approach for the description of physical human-robot interaction (pHRI) tasks that involve two-arm coordination, and where tasks are described by the relative pose between the human hand and the robot hand. We develop a unified kinematic model that takes into account the human-robot system from a holistic point of view, and we also propose a kinematic control strategy for pHRI that comprises different levels of shared autonomy. Since the kinematic model takes into account the complete human-robot interaction system and the kinematic control law is closed loop at the interaction level, the kinematic constraints of the task are enforced during its execution. Experiments are performed in order to validate the proposed approach, including a particular case where the robot controls the human arm by means of functional electrical stimulation (FES), which may potentially provide useful solutions for the interaction between assistant robots and impaired individuals (e.g., quadriplegics and hemiplegics).

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Groothuis, S. S., Stramigioli, S. and Carloni, R., “Lending a helping hand: Toward novel assistive robotic arms,” IEEE Robot. Autom. Mag. 20 (1), 2029 (Mar. 2013).Google Scholar
2De Santis, A., Siciliano, B., De Luca, A. and Bicchi, A., “An atlas of physical human-robot interaction,” Mech. Mach. Theory 43 (3), 253270 (Mar. 2008).CrossRefGoogle Scholar
3.Goodrich, M. A. and Schultz, A. C., “Human-robot interaction: A survey,” Found. Trends Hum.-Comput. Interact. 1 (3), 203275 (2007).Google Scholar
4.Yanco, H. A. and Drury, J., “Classifying Human-Robot Interaction: An Updated Taxonomy,” IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), IEEE (2004), pages 28412846.Google Scholar
5.Takubo, T., Arai, H., Hayashibara, Y. and Tanie, K., “Human-robot cooperative manipulation using a virtual nonholonomic constraint,” Int. J. Robot. Res. 21 (5–6), 541553 (May 2002).CrossRefGoogle Scholar
6.Mortl, A., Lawitzky, M., Kucukyilmaz, A., Sezgin, M., Basdogan, C. and Hirche, S., “The role of roles: Physical cooperation between humans and robots,” Int. J. Robot. Res. 31 (13), 16561674 (Aug. 2012).CrossRefGoogle Scholar
7.Krebs, H. I., Hogan, N., Aisen, M. L. and Volpe, B. T., “Robot-aided neurorehabilitation,” IEEE Trans. Rehabil. Eng. 6 (1), 7587 (Mar. 1998).CrossRefGoogle ScholarPubMed
8.Soyama, R., Ishii, S. and Fukase, A., “Selectable Operating Interfaces of the Meal-Assistance Device “My Spoon,” Rehabilitation (Bien, Z. and Stefanov, D., eds.) (Springer Berlin / Heidelberg, 2004) pp. 155163.Google Scholar
9.Chen, T. L., Ciocarlie, M., Cousins, S., Grice, P. M., Hawkins, K., Kemp, C. C., Lazewatsky, D. A., Leeper, A. E., Paepcke, A., Pantofaru, C., Smart, W. D. and Takayama, L., “Robots for humanity: Using assistive robotics to empower people with disabilities,” IEEE Robot. Autom. Mag. 20 (1), 3039 (Mar. 2013).CrossRefGoogle Scholar
10.Sisbot, E., Marin-Urias, L., Broquère, X., Sidobre, D. and Alami, R., “Synthesizing robot motions adapted to human presence,” Int. J. Soc. Robot. 2 (3), 329343 (2010).Google Scholar
11.Ueha, R., Pham, H. T. T., Hirai, H. and Miyazaki, F., “A Simple Control Design for Human-Robot Coordination Based on the Knowledge of Dynamical Role Division,” IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009 (IROS 2009) (2009) pp. 3051–3056.Google Scholar
12.Adorno, B. V., Bo, A. P. L., Fraisse, P. and Poignet, P., “Towards a Cooperative Framework for Interactive Manipulation Involving a Human and a Humanoid,” IEEE International Conference on Robotics and Automation, IEEE (May 2011) pp. 37773783.Google Scholar
13.Adorno, B. V., Bo, A. P. L. and Fraisse, P., “Interactive Manipulation Between a Human and a Humanoid: When Robots Control Human Arm Motion,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (Sep. 2011) pp. 46584663.Google Scholar
14.Selig, J. M., Geometric Fundamentals of Robotics, 2nd ed. (Springer-Verlag New York Inc., 2005).Google Scholar
15.Akyar, B., “Dual quaternions in spatial kinematics in an algebraic sense,” Turk. J. Math. 32 (4), 373391 (2008).Google Scholar
16.Adorno, B. V., Two-arm Manipulation: From Manipulators to Enhanced Human-Robot Collaboration [Contribution à la manipulation à deux bras: des manipulateurs à la collaboration homme-robot] Ph.D. Thesis (Université Montpellier 2, 2011).Google Scholar
17.McCarthy, J. M., Introduction to Theoretical Kinematics (The MIT Press, Cambridge, MA, 1990) pp. 1145.Google Scholar
18.Adorno, B. V., Fraisse, P. and Druon, S., “Dual Position Control Strategies Using the Cooperative Dual Task-Space Framework,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Taipei (Oct. 2010), pages 39553960.Google Scholar
19.Uchiyama, M. and Dauchez, P., “A Symmetric Hybrid Position/Force Control Scheme for the Coordination of Two Robots,” Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Comput. Soc. Press (1988) pp. 350356.Google Scholar
20.Williams, D. and Khatib, O., “The Virtual Linkage: A Model for Internal Forces in Multi-Grasp Manipulation,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.1 (1993) pp. 10251030.Google Scholar
21.Chiacchio, P., Chiaverini, S. and Siciliano, B., “Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system,” J. Dyn. Syst. Meas. Control 118 (4), 691 (1996).CrossRefGoogle Scholar
22.Caccavale, F. and Uchiyama, M., Cooperative Manipulators, chapter 29 (Springer, 2008) pp. 701718.Google Scholar
23.Caccavale, F., Lippiello, V., Muscio, G., Pierri, F., Ruggiero, F. and Villani, L., “Kinematic Control with Force Feedback for a Redundant Bimanual Manipulation System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (Sep. 2011) pp. 41944200.Google Scholar
24.Caccavale, F., Lippiello, V., Muscio, G., Pierri, F., Ruggiero, F. and Villani, L., “Grasp planning and parallel control of a redundant dual-arm/hand manipulation system,” Robotica 31 (07), 11691194 (Jul. 2013).CrossRefGoogle Scholar
25Pham, H.-L., Perdereau, V., Adorno, B. V. and Fraisse, P., “Position and Orientation Control of Robot Manipulators Using Dual Quaternion Feedback,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Taipei (Oct. 2010) pp. 658663.Google Scholar
26.Chiaverini, S., “Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators,” IEEE Trans. Robot. Autom. 13 (3), 398410 (Jun. 1997).Google Scholar
27.Figueredo, L. F. C., Adorno, B. V., Ishihara, J. Y. and Borges, G. A., “Robust Kinematic Control of Manipulator Robots Using Dual Quaternion Representation,” IEEE International Conference on Robotics and Automation (ICRA), IEEE, Karlsruhe (2013) pp. 19411947.Google Scholar
28Siciliano, Bruno, Sciavicco, Lorenzo, Villani, Luigi, and Oriolo, Giuseppe. Robotics: modelling, planning and control. Springer Verlag, 2009.Google Scholar
29.Popovic, D. B. and Sinkjaer, T., Control of Movement for the Physically Disabled: Control for Rehabilitation Technology (Springer, London, UK, 2000).Google Scholar
30, A. P. L., Active Pathological Tremor Compensation on the Upper Limbs using Functional Electrical Stimulation [Compensation active de tremblements pathologiques des membres supérieurs via la stimulation électrique fonctionnelle] Ph.D. Thesis (Université Montpellier 2, 2010).Google Scholar
31.Stasse, O., Evrard, P., Perrin, N., Mansard, N. and Kheddar, A., “Fast Foot Prints Re-Planning and Motion Generation during Walking in Physical Human-Humanoid Interaction,” Proceedings of the 9th IEEE-RAS International Conference on Humanoid Robots (Dec. 2009) pp. 284–289.Google Scholar
32.Sentis, L. and Khatib, O., “Synthesis of whole-body behaviors through hierarchical control of behavioral primitives,” Int. J. Humanoid Robot. 2 (4), 505518 (2005).CrossRefGoogle Scholar
33.Mansard, N. and Chaumette, F., “Task sequencing for high-level sensor-based control,” IEEE Trans. Robot. 23 (1), 6072 (Feb. 2007).Google Scholar
34.Mansard, N., Khatib, O. and Kheddar, A., “A unified approach to integrate unilateral constraints in the stack of tasks,” IEEE Trans. Robot. 25 (3), 670685 (Jun. 2009).Google Scholar
35.Kanoun, O., Lamiraux, F. and Wieber, P.-B., “Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task,” IEEE Trans. Robot. 27 (4), 785792 (Aug. 2011).Google Scholar