Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T03:22:38.643Z Has data issue: false hasContentIssue false

Kinematic design of a novel Multi-legged robot with Rigid-flexible coupling grippers for asteroid exploration

Published online by Cambridge University Press:  14 June 2022

Qingpeng Wen
Affiliation:
State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Jun He*
Affiliation:
State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Feng Gao
Affiliation:
State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
*
*Corresponding author. E-mail: [email protected]

Abstract

Multi-legged robots with rigid-flexible coupling grippers have appealing applications to asteroid exploration with the microgravity. However, these robots usually have significantly complicated structures, which leads to a great challenge for the kinematic design.This paper proposes the kinematic design method for a novel multi-legged robot with the microspine gripper. First, the structure of the multi-legged asteroid exploration robot and the microspine gripper are demonstrated. Second, four performance evaluation indices, which are used to evaluate the stiffness, velocity, motion / force transfer efficiency and gripper attachment efficiency of the robot, are derived from the kinematic model. Non-dimensional design spaces of parameters to be optimized are drawn, and performance atlases are presented in design spaces. Third, the stiffness model of the microspine is derived. In addition, the constraint condition of the restoring spring is established, and the stiffness of restoring springs are optimized using the genetic algorithm. Several experiments are conducted to verify the stiffness model of the microspine. Finally, the prototype is developed and the experimental results validates the kinematic design method.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Trilling, D. E., Lisse, C., Cruikshank, D. P., Emery, J. P., Fernández, Y., Fletcher, L. N., Hamilton, D. P., Hammel, H. B., Harris, A. W. and Mueller, M., “Spitzer’s Solar System studies of asteroids, planets and the zodiacal cloud,” Nat. Astron. 4, 940946 (2020). doi: 10.1038/s41550-020-01221-y.CrossRefGoogle Scholar
Evans, N. W. and Tabachnik, S. A., “Asteroids in the inner Solar system – II. Observable properties,” Mon. Not. R. Astron. Soc. 319, 8094 (2000). doi: 10.1046/j.1365-8711.2000.03761.x.CrossRefGoogle Scholar
Kawaguchi, J., Fujiwara, A. and Uesug, T., “Hayabusa - Its technology and science accomplishment summary and Hayabusa-2,” Acta Astronaut. 62, 639647 (2008). doi: 10.1016/j.actaastro.2008.01.028.CrossRefGoogle Scholar
Fujiwara, A., Kawaguchi, J., Yeomans, D. K., Abe, M., Mukai, T., Okada, T., Saito, J., Yano, H., Yoshikawa, M. and Scheeres, D. J., “The rubble-pile asteroid Itokawa as observed by Hayabusa,” Science 312, 13301334 (2006). doi: 10.1126/science.1125841.CrossRefGoogle ScholarPubMed
Di, K. C., Liu, Z. Q., Wan, W. H., Peng, M., Liu, B., Wang, Y., Gou, S. and Yue, Z., “Geospatial technologies for Chang’e-3 and Chang’e-4 lunar rover missions,” Geo.-Spat. Inf. Sci. 23, 8797 (2020). doi: 10.1080/10095020.2020.1718002.CrossRefGoogle Scholar
Golombek, M. P., Moore, H. J., Haldemann, A. F. C., Parker, T. J. and Schofield, J. T., “Overview of the Mars Pathfinder Mission and assessment of landing site predictions,” Science 278, 17431748 (1997). DOI: 10.1126/science.278.5344.1743.CrossRefGoogle ScholarPubMed
Wittmann, K., Feuerbacher, B., Ulamec, S., Rosenbauer, H., Bibring, J. P., Moura, D., Mugnuolo, R., Dipippo, S., Szego, K. and Haerendel, G., “Rosetta Lander in situ characterization of a comet nucleus,” Acta Astronaut. 45, 389395 (1999). doi: 10.1016/S0094-5765(99)00158-7.CrossRefGoogle Scholar
Ulamec, S., Espinasse, S., Feuerbacher, B., Hilchenbach, M., Moura, D., Rosenbauer, H., Scheuerle, H. and Willnecker, R., “Rosetta Lander - Philae: Implications of an alternative mission,” Acta Astronaut. 58, 435441 (2006). doi: 10.1016/j.actaastro.2005.12.009.CrossRefGoogle Scholar
Stefaan, V. W., Yuichi, T., Kent, Y., Akira, M., Satoshi, T. and Daniel, S., “Prearrival deployment analysis of rovers on Hayabusa2 asteroid explorer,” J. Spacecraft Rockets 55, 797817 (2018). doi: 10.2514/1.A34157.Google Scholar
Thuillet, F., Michel, P., Maurel, C., Ballouz, R. L. and Sugita, S., “Numerical modeling of lander interaction with a low-gravity asteroid regolith surface Application to MASCOT on board Hayabusa2,” Astron. Astrophys. 615, A41 (2018). doi: 10.1051/0004-6361/201832779.CrossRefGoogle Scholar
Ho, T. M., Baturkin, V., Grimm, C., Grundmann, J. T. and Okada, T., “MASCOT-The mobile asteroid surface scout onboard the Hayabusa2 mission,” Space Sci. Rev. 208, 339374 (2017). doi: 10.1007/s11214-016-0251-6.CrossRefGoogle Scholar
Fang, L. and Gao, F., “Type design and behavior control for six legged robots,” Chin. J. Mech. Eng. 31(1), 48–59 (2018).CrossRefGoogle Scholar
Uckert, K., Parness, A., Chanover, N., Eshelman, E. J. and Boston, P., “Investigating habitability with an integrated rock-climbing robot and astrobiology instrument suite,” Astrobiology 20(12) (2020). doi: 10.1089/ast.2019.2177.CrossRefGoogle ScholarPubMed
Chacin, M. and Yoshida, K., “Stability and Adaptability Analysis for Legged Robots Intended for Asteroid Exploration,” In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols. 1–12 (2006) pp. 1744–1749. doi: 10.1109/Iros.2006.282135.CrossRefGoogle Scholar
Yoshida, K., Maruki, T. and Yano, H., “A novel strategy for asteroid exploration with a surface robot,” In: The Second World Space Congress, vol. 34 (2022) pp. 1966–1971.Google Scholar
Hao, J., Hawkes, E. W., Fuller, C., Estrada, M. A. and Cutkosky, M. R., “A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity,” Sci. Robot. 2(7), eaan4545 (2017). doi: 10.1126/scirobotics.aan4545.Google Scholar
Ge, D. X., Tang, Y. C., Ma, S. G., Matsuno, T. and Ren, C., “A pressing attachment approach for a wall-climbing robot utilizing passive suction cups,” Robotics 9(2), 26 (2020). doi: 10.3390/robotics9020026.CrossRefGoogle Scholar
Parness, A., “Anchoring Foot Mechanisms for Sampling and Mobility in Microgravity,” In: 2011 IEEE International Conference on Robotics and Automation (ICRA), San Francisco, USA (2011).Google Scholar
Autumn, K., Buehler, M., Cutkosky, M., Fearing, R., Full, R. J., Goldman, D., Groff, R., Provancher, W., Rizzi, A. A. and Saranli, U., “Robotics in Scansorial Environments,” In: Unmanned Ground Vehicle Technology Vii, vol. 5804 (2005) pp. 291–302. doi: 10.1117/12.506157.CrossRefGoogle Scholar
Wang, S., Jiang, H., Huh, T. M., Sun, D., Ruotolo, W., Miller, M. W., Roderick, W. R. T., Stuart, H. and Cutkosky, M., “SpinyHand: Contact load sharing for a human-scale climbing robot,” J. Mech. Robot. Trans. ASME 11(3), 031009 (2019). doi: 10.1115/1.4043023.CrossRefGoogle Scholar
Asbeck, A. T. and Cutkosky, M. R., “Designing compliant spine mechanisms for climbing,” J. Mech. Robot. Trans. ASME 4, 031007 (2012). doi: 10.1115/1.40066591.CrossRefGoogle Scholar
Parness, A., Frost, M., King, J. P. and Thatte, N., “Demonstrations of Gravity-Independent Mobility and Drilling on Natural Rock Using Microspines,2012 IEEE International Conference on Robotics and Automation (ICRA) (2012) pp. 35473548.CrossRefGoogle Scholar
Asbeck, A. T., Kim, S., Cutkosky, M. R., Provancher, W. R. and Lanzetta, M., “Scaling hard vertical surfaces with compliant microspine arrays,” Int. J. Robot. Res. 25, 11651179 (2006). doi: 10.1177/0278364906072511.CrossRefGoogle Scholar
Parness, A., Willig, A., Berg, A., Shekels, M. and Kennedy, B., “A Microspine Tool: Grabbing and Anchoring to Boulders on the Asteroid Redirect Mission,” In: 2017 IEEE Aerospace Conference, Montana, USA (2017).Google Scholar
Wang, S. Q., Jiang, H. and Cutkosky, M. R., “Design and modeling of linearly-constrained compliant spines for human-scale locomotion on rocky surfaces,” Int. J. Robot. Res. 36, 9851000 (2017). doi: 10.1177/0278364917720019.CrossRefGoogle Scholar
Pope, M. T., Kimes, C. W., Jiang, H., Hawkes, E. W., Estrada, M. A., Kerst, C. F., Roderick, W. R. T., Han, A. K., Christensen, D. L. and Cutkosky, M. R., “A multimodal robot for perching and climbing on vertical outdoor surfaces,” IEEE Trans. Robot. 33, 3848 (2017). doi: 10.1109/Tro.2016.2623346.CrossRefGoogle Scholar
Lynch, G. A., Clark, J. E., Lin, P. C. and Koditschek, D. E., “A Bioinspired Dynamical Vertical Climbing Robot,” Int. J. Robot. Res. 31, 974996 (2012). doi: 10.1177/0278364912442096.CrossRefGoogle Scholar
Parness, A., Frost, M., Wiltsie, N., King, J. P. and Kennedy, B., “Gravity Independent Climbing Robot: Technology Demonstration and Mission Scenario Development,” In: AIAA SPACE 2013 Conference and Exposition, San Diego, CA (2013), 8 pp.CrossRefGoogle Scholar
Zhang, R. X. and Latombe, J. C., “Capuchin: A free-climbing robot invited paper,” Int. J. Adv. Robot. Syst. 10, 194 (2013). doi: 10.5772/56469.CrossRefGoogle Scholar
Galvez, J. A., Estremera, J. and de Santos, P. G., “A new legged-robot configuration for research in force distribution,” Mechatronics 13, 907932 (2003). doi: 10.1016/S0957-4158(03)00008-4.CrossRefGoogle Scholar
Liu, Z., Zhuang, H.-C., Gao, H.-B., Deng, Z. Q. and Ding, L., “Static force analysis of foot of electrically driven heavy-duty six-legged robot under tripod gait,” Chin. J. Mech. Eng. 63(31), 1–15 (2018).10.1186/s10033-018-0263-0CrossRefGoogle Scholar
Wile, G. D., Daltorio, K. A., Diller, E. D., Palmer, L. R., Gorb, S. N., Ritzmann, R. E. and Quinn, R. D., “Screenbot: Walking Inverted Using Distributed Inward Gripping,” In: 2008 IEEE/RSJ International Conference on Robots and Intelligent Systems, Vols. 1–3, Conference Proceedings (2008), p. 1513. doi: 10.1109/Iros.2008.4651045.CrossRefGoogle Scholar
Liu, X. J., Wang, J. S. and Pritschow, G., “Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms,” Mech. Mach. Theory 41, 119144 (2006). doi: 10.1016/j.mechmachtheory.2005.05.003.CrossRefGoogle Scholar
Liu, X. J., Wang, J. S. and Pritschow, G., “On the optimal kinematic design of the PRRRP 2-DoF parallel mechanism,” Mech. Mach. Theory 41, 11111130 (2006). doi: 10.1016/j.mechmachtheory.2005.10.008.CrossRefGoogle Scholar
Wang, J., Wu, C. and Liu, X.-J., “Performance evaluation of parallel manipulators: Motion/force transmissibility and its index,” Mech. Mach. Theory 45, 14621476 (2010). doi: 10.1016/j.mechmachtheory.2010.05.001.CrossRefGoogle Scholar