Published online by Cambridge University Press: 06 November 2017
In this work, we propose a method able to find user-oriented gait trajectories that can be used in powered lower limb orthosis applications. Most research related to active orthotic devices focuses on solving hardware issues. However, the problem of generating a set of joint trajectories that are user-oriented still persists. The proposed method uses principal component analysis to extract shared features from a gait dataset, taking into consideration gait-related variables such as joint angle information and the user's anthropometric features, used directly in an orthosis application. The trajectories of joint angles used by the model are represented by a given number of harmonics according to their respective Fourier series analyses. This representation allows better performance of the model, whose capability to generate gait information is validated through experiments using a real active orthotic device, analysing both joint motor energy consumption and user metabolic effort.