Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T02:40:25.044Z Has data issue: false hasContentIssue false

Global optimal control of redundant robot

Published online by Cambridge University Press:  09 March 2009

Karl Gotlih
Affiliation:
University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, SI–62000 Maribor (Slovenia).
Inge Troch
Affiliation:
Technical University Vienna, Inst. f. Technical Mathematics, Wiedner Haupstrasse 8–10/114, A–1040 Vienna (Austria).
Karel Jezernik
Affiliation:
University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, SI–62000 Maribor (Slovenia).

Summary

A global optimal control algorithm was developed with the aim of finding a control which satisfies some special requirements in the sense of obtaining singular position free movement of the redundant robot mechanism. The solution of the developed global optimal control algorithm is a boundary value problem. The additional constraints in the boundary value problem were constructed with the use of an optimization process. The usefulness of the developed global optimal control algorithm is demonstrated by the example of the 3 DOFs planar redundant robot mechanism of SCARA type.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Allgeuer, H., “Control strategy for a redundant PUMA manipulator”, Robotica, pp. 361369, 12, 361369 (1994).CrossRefGoogle Scholar
2.Carignan, R.C., “Trajectory Optimization for Kinematically Redundant Arms“, J.Robotic Systems 8(2), 221248 (1991).CrossRefGoogle Scholar
3.Nedungadi, A. and Kazerouinian, K., “A Local Solution with Global Characteristics for the Joint Torque Optimization of a Redundant ManipulatorJ.Robotic Systems 6(5), 631654 (1989).CrossRefGoogle Scholar
4.Kazerounian, K. and Wang, Z., “Global versus Local Optimization in redundancy Resolution of Robotic Manipulators”, Int.J.Robotics Research 7, No. 5, 312 (1988).CrossRefGoogle Scholar
5.Nakamura, Y. and Hanafusa, H., “Optimal Redundancy Control of Robot ManipulatorsInt. J.Robotics Research 6, No. 1, 3242 (1987).CrossRefGoogle Scholar
6.Hanafusa, H. and Nakamura, Y., “Control of Articulated Robots with Redundancy” IFAC, Theory of Robots, Vienna-Austria, (1986) pp 1522.Google Scholar
7.Kyriakopoulos, K.J. and Saridis, G.N., “Minimum Jerk Path generation“, IEEE Int. Conference of Robotics and Automation(1988), pp. 364369.Google Scholar
8.Yoshikawa, T., “Analysis and Control of Robot Manipulators with Redundancy” The First International Symposium The MIT Press, Cambridge, Massachusetts (1984), pp. 735747.Google Scholar
9.Brewer, J.W., “Kronecker Products and Matrix Calculus in System Theory” IEEE Transactions on Circuits and Systems CAS-2S, No. 9, 772781 (1987).Google Scholar
10.Vetter, J.W., “Derivative Operations on Matrices” IEEE Transactions on Automatic Control, 241244 (1970).CrossRefGoogle Scholar
11.Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization (Academic Press, London, 1981).Google Scholar
12.Allgeuer, H., “Zur kinematischen Steuerung von Robotern mit redundanten Freiheitsgraden” Dissertation (Technische Universität, Wien, 1992).Google Scholar
13.Desoyer, K., Kopacek, P. and Troch, I., Industrieroboter und Handhabungsgerdte (R. Oldenbourg Verlag, München, Wien, 1985).Google Scholar
14.Won, J.H., Choi, B.W. and Chung, M.J., “A unified approach to the inverse kinematic solution for a redundant manipulatorRobotica, pp. 159165, 11, part 2, 159–165 (1993).CrossRefGoogle Scholar
15.Paul, B., Kinematics and Dynamics of Planar Machinery (Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1979).Google Scholar
16.NAG, NAG Fortran Library Reference Manual—Mark 14 (Numerical Algorithms Group Limited, Oxford, England, 1993).Google Scholar