Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T15:47:27.766Z Has data issue: false hasContentIssue false

From identification to motion optimization of a planar manipulator

Published online by Cambridge University Press:  09 March 2009

H. Gaudin
Affiliation:
Université de Poitiers, Laboratoire de Mécanique des Solides (URA CNRS, 861), 40 Av. du Recteur Pineau, 86022 Poitiers (France)
G. Bessonnet
Affiliation:
Université de Poitiers, Laboratoire de Mécanique des Solides (URA CNRS, 861), 40 Av. du Recteur Pineau, 86022 Poitiers (France)

Summary

Identification of inertia constants and joint frictions of a robot manipulator is achieved in situ, without dismantling operations, by means of specific test motions. The necessary estimation of actuating torques is carried out by measuring, with Hall effect transducers, the current absorbed by the motors which power the system. This identification is accomplished by using a precise methodological order adapted to a planar SCARA type manipulator with two degrees of freedom. The identification of friction laws underscores a hysteresis phenomenon of the dissipative torques. This indicates that friction doesn't result from a simple superposition of a dry friction law and a viscous damping law. The identification results were applied with success to implementation of optimized trajectories computed on the basis of a dynamic criterion. The effective minimization of the performance criterion along the optimized trajectories, according to the corresponding standard trajectories, was verified experimentally by evaluating the motor work and actuator torques.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Khalil, W. & Kleinfinger, J. F., “Minimum operation and minimum parameters of the dynamic models of tree structure robotsIEEE J. Robotics and Automation, RA-3, No. 6, 517526 (12, 1987).Google Scholar
2.Gautier, M. & Khalil, W., “Direct calculation of minimum set of inertial parameters of serial robots”. IEEE Trans, on Robotics and Automation 6, No. 3, 368373 (06, 1990).CrossRefGoogle Scholar
3.Armstrong, B., Khatib, O. & Burdick, J., “The explicit dynamic model and inertial parameters of the PUMA-560 arm” IEEE Int. Conf. on Robotics and Automation,San-Francisco, California (1986) pp. 510518.Google Scholar
4.Lee, K. W., “Shape optimization of assemblies using geometric properties” Ph.D. Dissertation (Department of Mechanical Engineering, MIT 1983).Google Scholar
5.Olsen, H. B. & Bekey, G. A., “Identification of parameters in models of robots with rotary joints” IEEE Int. Conf. on Robotics and AutomationMissouri (1985), pp. 10451049.Google Scholar
6.Khosla, P. K. & Kanade, T., “Parameters identification of robot dynamics” Proc. of the 24th CDC,Florida(Dec., 1985) pp. 17541760.CrossRefGoogle Scholar
7.Atkeson, C. G., An, C. H. & Hollerbach, J.M., “Estimation of inertial parameters of manipulator loads and linksInt. J. Robotics Research 5, No. 3, 101119 (1986).Google Scholar
8.Atkeson, C. G., An, C. H. & Hollerbach, J. M., “Estimation of inertial parameters of rigid body links of manipulators” Int. Proc. of the 24th CDC(Dec., 1985)) pp. 990995.Google Scholar
9.Mayeda, H., Osuka, K. & Kangawa, A., “A new identification method for serial manipulator arms” IFAC, 9th World Congress, Budapest,Hungary (1984) pp. 7479.Google Scholar
10.Moon, J. I., Chung, W. K., Cho, H. S. & Gweon, D.G., “A dynamic parameter identification method for the PUMA-760 robot” 16th 1SIR,Brussels, Belgium(Oct., 1986) pp. 5565.Google Scholar
11.Lim, T. G., Choi, H. S. & Chung, W. K., “A parameter identification method for robot dynamic models using a balancing mechanismRobotica 7, Part 1, 327337 (1989)Google Scholar
12.Gaudin, H., “Contribution à l’identification in situ des constantes d’inertie et des lois de frottement articulaire d’un robot manipulateur en vue d’une application expérimentale au suivi de trajectoires optimales” Thèse (Université de Poitiers, France, 1992).Google Scholar
13.Bessonnet, G., “Optimisation dynamique des mouvements point à point de robots manipulateurs” Thèse (Universitè de Poitiers, France, 1992).Google Scholar
14.Sabot, J., “Perturbations dynamiques induites par un réducteur harmonic-drive en régime stationnaire” Congrès ARA, Toulouse (1984) pp. H1H22.Google Scholar
15.Weinreb, A. & Bryson, A. E., “Optimal control of systems with hard control boundsIEEE Trans. on Automatic Control AC-3, No. 11, 11351138 (1985)Google Scholar
16.Geering, H. P., Guzzella, L., Hepner, S.A.R. & Onder, C.H., “Time-optimal motions of robot in assembling tasksIEEE Trans. on Automatic Control AC-31, No. 6. 512518 (1986).Google Scholar
17.Chen, Y. & Desrochers, A. A., “A proof of the structure of the minimum time control law of robotic manipulators using a Hamiltonian formulationIEEE Trans. on Robotics and Automation 6, No. 3, 388393 (1990).Google Scholar
18.Bessonnet, G. & Lallemand, J. P., “Optimal motions of robot manipulator with bounded actuator powers” Proc. Eighth World Congress on the Theory of Machines and Mechanisms, IFTOMM,Prague (1991) 2, pp. 413416.Google Scholar
19.Pontriagin, L., Boltiansky, V., Gamkrelidze, A. & Michtchenco, E., Théorie Mathématique des Processus Optimaux (Mir, Moscow, 1974).Google Scholar
20.Ioffe, D. D. & Tihomirov, V. M., Theory of External Problems (North-Holland Publishing Company Amsterdam, 1979).Google Scholar
21. NAG Fortran Library, Routine D02RAF (1982).Google Scholar