Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T19:08:10.336Z Has data issue: false hasContentIssue false

Force tracking smooth adaptive admittance control in unknown environment

Published online by Cambridge University Press:  17 March 2023

Chengguo Liu
Affiliation:
College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
Zeyu Li*
Affiliation:
School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
*
*Corresponding author. E-mail: [email protected]

Abstract

In this research, a force tracking smoothing adaptive admittance controller is proposed that grants precise contact forces (performance necessary for many critical interaction tasks such as polishing) for unknown interaction environments (e.g., leather or thin and soft materials). First, an online indirect adaptive update strategy is proposed for generating the reference trajectory required by the desired tracking force, considering the uncertainty of the interaction. The sensor noise amplitude is environment dynamics and the necessity condition for traditional admittance controller to achieve ideal steady-state force tracking. Then, a pre-PD controller is introduced to increase the parameter convergence rate while ensuring the steady-state force tracking accuracy and enhancing the robustness of the system. The robustness boundary is also analyzed to provide assurance for the stability of the system. Finally, we verify the effectiveness of the proposed method in simulations. Simultaneously, an experiment is conducted on the AUBO-i5 serial collaborative robot, and the experimental results proved the excellent comprehensive performance of the control framework.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haddadin, S., De Luca, A. and Albu-Schaffer, A., “Robot collisions: A survey on detection, isolation, and identification,” IEEE Trans. Robot. 33(6), 12921312 (2017).CrossRefGoogle Scholar
Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schaffer, A., Kosuge, K. and Khatib, O., “Progress and prospects of the human-robot collaboration,” Auton. Robots 42(5), 957975 (2018).CrossRefGoogle Scholar
Yu, X., Liu, P., He, W., Liu, Y., Chen, Q. and Ding, L., “Human-robot variable impedance skills transfer learning based on dynamic movement primitives,” IEEE Robot.Autom. Lett. 7(3), 64636470 (2022).CrossRefGoogle Scholar
Cao, H., He, Y., Chen, X. and Liu, Z., “Control of adaptive switching in the sensing-executing mode used to mitigate collision in robot force control,” J. Dyn. Syst. Meas. Control 141(11), 111003 (2019).CrossRefGoogle Scholar
Lakshminarayanan, S., Kana, S., Mohan, D. M., Manyar, O. M., Then, D. and Campolo, D., “An adaptive framework for robotic polishing based on impedance control,” Int. J. Adv. Manuf. Technol. 112(1), 401417 (2021).CrossRefGoogle Scholar
Ochoa, H. and Cortesao, R., “Impedance control architecture for robotic-assisted mold polishing based on human demonstration,” IEEE Trans. Ind. Electron. 69(4), 38223830 (2022).CrossRefGoogle Scholar
Ajani, O. S. and Assal, S. F. M., “Hybrid force tracking impedance control-based autonomous robotic system for tooth brushing assistance of disabled people,” IEEE Trans. Med. Rob. Bionics 2(4), 649660 (2020).CrossRefGoogle Scholar
Chinimilli, P. T., Qiao, Z., Sorkhabadi, S. M. R., Jhawar, V., Fong, I. H. and Zhang, W. L., “Automatic virtual impedance adaptation of a knee exoskeleton for personalized walking assistance,” Robot. Auton. Syst. 114, 6676 (2019).CrossRefGoogle Scholar
Song, A., Pan, L., Xu, G. and Li, H., “Adaptive motion control of arm rehabilitation robot based on impedance identification,” Robotica 33(9), 17951812 (2015).CrossRefGoogle Scholar
Alevizos, K. I., Bechlioulis, C. P. and Kyriakopoulos, K. J., “Physical human-robot cooperation based on robust motion intention estimation,” Robotica 38(10), 18421866 (2020).CrossRefGoogle Scholar
Peternel, L., Tsagarakis, N. and Ajoudani, A.. Towards Multi-Modal Intention Interfaces for Human-Robot Co-Manipulation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016) pp. 26632669.CrossRefGoogle Scholar
Yu, X., Li, B., He, W., Feng, Y., Cheng, L. and Silvestre, C., “Adaptive-constrained impedance control for human-robot co-transportation,” IEEE Trans. Cybern. 52(12), 1323713249 (2022).CrossRefGoogle ScholarPubMed
Yu, X., He, W., Li, Q., Li, Y. and Li, B., “Human-robot co-carrying using visual and force sensing,” IEEE Trans. Ind. Electron. 68(9), 86578666 (2021).CrossRefGoogle Scholar
Yu, X., Zhang, S., Sun, L., Wang, Y., Xue, C. and Li, B., “Cooperative control of dual-arm robots in different human-robot collaborative tasks,” Assem. Autom. 40(1), 95104 (2020).CrossRefGoogle Scholar
Ugurlu, B., Havoutis, I., Semini, C., Kayamori, K., Caldwell, D. G. and Narikiyo, T., “Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: Experiments on RoboCat-1 and HyQ,” Auton. Robots 38(4), 415437 (2015).CrossRefGoogle Scholar
Al-Shuka, H. F. N., Corves, B., Zhu, W.-H. and Vanderborght, B., “Multi-level control of zero-moment point-based humanoid biped robots: A review,” Robotica 34(11), 24402466 (2016).CrossRefGoogle Scholar
Raibert, M. H. and Craig, J. J., “Hybrid position/force control of manipulators,” J. Dyn. Syst. Meas. Control 103(2), 126133 (1981).CrossRefGoogle Scholar
Hogan, N., “Impedance control: An approach to manipulation: Part I—theory,” J. Dyn. Syst. Meas. Control 107(1), 17 (1985).CrossRefGoogle Scholar
Hogan, N., “Impedance control: An approach to manipulation: Part II—implementation,” J. Dyn. Syst. Meas. Control 107(1), 816 (1985).CrossRefGoogle Scholar
Hogan, N., “Impedance control: An approach to manipulation: Part III—applications,” J. Dyn. Syst. Meas. Control 107(1), 1724 (1985).CrossRefGoogle Scholar
Song, P., Yu, Y. and Zhang, X., “A tutorial survey and comparison of impedance control on robotic manipulation,” Robotica 37(5), 801836 (2019).CrossRefGoogle Scholar
Al-Shuka, H. F. N., Leonhardt, S., Zhu, W.-H., Song, R., Ding, C. and Li, Y., “Active impedance control of bioinspired motion robotic manipulators: An overview,” Appl. Bionics Biomech. 2018, 8203054(2018).CrossRefGoogle ScholarPubMed
Valency, T. and Zacksenhouse, M.. Instantaneous Model Impedance Control for Robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1 (IEEE, 2000) pp. 757762.Google Scholar
Calanca, A., Muradore, R. and Fiorini, P., “A review of algorithms for compliant control of stiff and fixed-compliance robots,” IEEE/ASME Trans. Mech. 21(2), 613624 (2016).CrossRefGoogle Scholar
Keemink, A. Q. L., van der Kooij, H. and Stienen, A. H. A., “Admittance control for physical human-robot interaction,” Int. J. Robot. Res. 37(11), 14211444 (2018).CrossRefGoogle Scholar
Labrecque, P. D. and Gosselin, C., “Variable admittance for pHRI: From intuitive unilateral interaction to optimal bilateral force amplification,” Robot. Comput.-Integr. Manuf. 52, 18 (2018).CrossRefGoogle Scholar
Ferraguti, F., Landi, C. T., Sabattini, L., Bonfè, M., Fantuzzi, C. and Secchi, C., “A variable admittance control strategy for stable physical human-robot interaction,” Int. J. Robot. Res. 38(6), 747765 (2019).CrossRefGoogle Scholar
Kim, T., Yoo, S., Seo, T., Kim, H. S. and Kim, J., “Design and force-tracking impedance control of 2-DOF wall-cleaning manipulator via disturbance observer,” IEEE/ASME Trans. Mech. 25(3), 14871498 (2020).CrossRefGoogle Scholar
Liang, W., Feng, Z., Wu, Y., Gao, J., Ren, Q. and Lee, T. H.. Robust Force Tracking Impedance Control of an Ultrasonic Motor-Actuated End-Effector in a Soft Environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 77167722.CrossRefGoogle Scholar
Hamedani, M. H., Sadeghian, H., Zekri, M., Sheikholeslam, F. and Keshmiri, M., “Intelligent impedance control using wavelet neural network for dynamic contact force tracking in unknown varying environments,” Control Eng. Pract. 113, 104840 (2021).CrossRefGoogle Scholar
Li, Y., Ganesh, G., Jarrassé, N., Haddadin, S., Albu-Schaeffer, A. and Burdet, E., “Force, impedance, and trajectory learning for contact tooling and haptic identification,” IEEE Trans. Robot. 34(5), 11701182 (2018).CrossRefGoogle Scholar
Horak, P. C. and Trinkle, J. C., “On the similarities and differences among contact models in robot simulation,” IEEE Robot. Autom. Lett. 4(2), 493499 (2019).CrossRefGoogle Scholar
Ott, C., Mukherjee, R. and Nakamura, Y., “A hybrid system framework for unified impedance and admittance control,” J. Intell. Robot. Syst. 78(3), 359375 (2015).CrossRefGoogle Scholar
Seraji, H. and Colbaugh, R., “Force tracking in impedance control,” Int. J. Rob. Res. 16(1), 97117 (1997).CrossRefGoogle Scholar
Jung, S., Hsia, T. C. and Bonitz, R. G., “Force tracking impedance control for robot manipulators with an unknown environment: Theory, simulation, and experiment,” Int. J. Robot. Res. 20(9), 765774 (2001).CrossRefGoogle Scholar
Roveda, L., Pedrocchi, N., Vicentini, F. and Tosatti, L. M., “Industrial compliant robot bases in interaction tasks: A force tracking algorithm with coupled dynamics compensation,” Robotica 35(8), 17321746 (2017).CrossRefGoogle Scholar
Valency, T. and Zacksenhouse, M., “Accuracy/robustness dilemma in impedance control,” J. Dyn. Syst. Meas. Control 125(3), 310319 (2003).CrossRefGoogle Scholar
Duan, J., Gan, Y., Chen, M. and Dai, X., “Adaptive variable impedance control for dynamic contact force tracking in uncertain environment,” Robot. Auton. Syst. 102, 5465 (2018).CrossRefGoogle Scholar