Hostname: page-component-55f67697df-px5tt Total loading time: 0 Render date: 2025-05-12T06:54:15.887Z Has data issue: false hasContentIssue false

Fixed-time control of teleoperation systems based on adaptive event-triggered communication and force estimators

Published online by Cambridge University Press:  16 September 2024

Xia Liu*
Affiliation:
School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
Hui Wen
Affiliation:
School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
*
Corresponding author: Xia Liu; Email: [email protected]

Abstract

A fixed-time control strategy based on adaptive event-triggered communication and force estimators is proposed for a class of teleoperation systems with time-varying delays and limited bandwidth. Two force estimators are designed to estimate the operator force and environment force instead of force sensors. With the position, velocity, force estimate signals, and triggering error, an adaptive event-triggered scheme is designed, which automatically adjusts the triggering thresholds to reduce the access frequency of the communication network. With the state information transmitted at the moment of event triggering while considering the time-varying delays, a fixed-time sliding mode controller is designed to achieve the position and force tracking. The stability of the system and the convergence of tracking error within a fixed time are mathematically proved. Experimental results indicate that the control strategy can significantly reduce the information transmission, enhance the bandwidth utilization, and ensure the convergence of tracking error within a fixed time for teleoperation systems.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Liu, Y. C., Dao, P. N. and Zhao, K. Y., “On robust control of nonlinear teleoperators under dynamic uncertainties with variable time delays and without relative velocity,” IEEE Trans Ind Inform 16(2), 12721280 (2020).CrossRefGoogle Scholar
Yang, Y., Feng, X., Li, J. and Hua, C., “Robust fixed-time cooperative control strategy design for nonlinear multiple-master/multiple-slave teleoperation system,” J Frankl Inst 360(3), 21932214 (2023).CrossRefGoogle Scholar
Kebria, P. M., Khosravi, A., Nahavandi, S., Shi, P. and Alizadehsani, R., “Robust adaptive control scheme for teleoperation systems with delay and uncertainties,” IEEE Trans Cybernet 50(7), 32433253 (2020).CrossRefGoogle ScholarPubMed
Tran, M.-D. and Kang, H.-J., “Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system,” Neurocomputing 228, 231240 (2017).CrossRefGoogle Scholar
Wang, Z., Chen, Z., Liang, B. and Zhang, B., “A novel adaptive finite time controller for bilateral teleoperation system,” Acta Astronaut 144, 263270 (2018).CrossRefGoogle Scholar
Nguyen, T.-V. and Liu, Y.-C., “Advanced finite-time control for bilateral teleoperators with delays and uncertainties,” IEEE Access 9, 141951141960 (2021).CrossRefGoogle Scholar
Wang, Z., Chen, Z., Zhang, Y., Yu, X., Wang, X. and Liang, B., “Adaptive finite-time control for bilateral teleoperation systems with jittering time delays,” Int J Robust Nonlin Control 29(4), 10071030 (2019).CrossRefGoogle Scholar
Xu, J. Z., Ge, M. F., Ding, T. F., Liang, C. D. and Liu, Z. W., “Neuro-adaptive fixed-time trajectory tracking control for human-in-the-loop teleoperation with mixed communication delays,” IET Control Theory Appl 14(19), 31933203 (2021).CrossRefGoogle Scholar
Yang, Y., Hua, C. and Guan, X., “Multi-manipulators coordination for bilateral teleoperation system using fixed-time control approach,” Int J Robust Nonlin Control 28(18), 56675687 (2018).CrossRefGoogle Scholar
Guo, S., Liu, Z., Li, L., Ma, Z. and Huang, P., “Fixed-time personalized variable gain tracking control for teleoperation systems with time varying delays,” J Frankl Inst 360(17), 1301513032 (2023).CrossRefGoogle Scholar
Azimifar, F., Abrishamkar, M., Farzaneh, B., Sarhan, A. A. D. and Amini, H., “Improving teleoperation system performance in the presence of estimated external force,” Robot Comp Integr Manuf 46, 8693 (2017).CrossRefGoogle Scholar
Han, L., Mao, J., Cao, P., Gan, Y. and Li, S., “Toward sensorless interaction force estimation for industrial robots using high-order finite-time observers,” IEEE Trans Ind Electron 69(7), 72757284 (2022).CrossRefGoogle Scholar
Yang, C., Peng, G., Cheng, L., Na, J. and Li, Z., “Force sensorless admittance control for teleoperation of uncertain robot manipulator using neural networks,” IEEE Trans Syst Man Cybern Syst 51(5), 32823292 (2021).CrossRefGoogle Scholar
Azimifar, F., Hassani, K., Saveh, A. H. and Ghomshe, F. T., “Performance analysis in delayed nonlinear bilateral teleoperation systems by force estimation algorithm,” Trans Inst Meas Control 40(5), 16371644 (2017).CrossRefGoogle Scholar
Namnabat, M., Zaeri, A. H. and Vahedi, M., “A passivity-based control strategy for nonlinear bilateral teleoperation employing estimated external forces,” J Braz Soc Mech Sci Eng 42(12), 110 (2020).CrossRefGoogle Scholar
Dehghan, S. A. M., Koofigar, H. R., Sadeghian, H. and Ekramian, M., “Observer-based adaptive force-position control for nonlinear bilateral teleoperation with time delay,” Control Eng Pract 107, 110 (2021).CrossRefGoogle Scholar
Yang, Y., Guo, F., Li, J. and Luo, X., “New delay-dependent position/force hybrid controller design for uncertain telerobotics without force sensors,” Trans Inst Meas Control 46(2), 253267 (2023).CrossRefGoogle Scholar
Yuan, Y., Wang, Y. and Guo, L., “Force reflecting control for bilateral teleoperation system under time-varying delays,” IEEE Trans Ind Inform 15(2), 11621172 (2019).CrossRefGoogle Scholar
Zhao, N., Shi, P., Xing, W. and Agarwal, R. K., “Resilient event-triggered control for networked cascade control systems under denial-of-service attacks and actuator saturation,” IEEE Syst J 16(1), 11141122 (2022).CrossRefGoogle Scholar
Hu, S. C., Chan, C. Y. and Liu, Y. C., “Event-Triggered Control for Bilateral Teleoperation with Time Delays,” In: IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Canada (IEEE, 2016) pp. 16341639.CrossRefGoogle Scholar
Liu, Y. C. and Hu, S. C., “Nonlinear bilateral teleoperators under event-driven communication with constant time delays,” Int J Robust Nonlin Control 29(11), 35473569 (2019).CrossRefGoogle Scholar
Li, C., Li, Y., Dong, J. and Wang, H., “Event-triggered control of teleoperation systems with time-varying delays,” In: China automation congress , Beijing, China, (2021) pp.15371542.Google Scholar
Hu, S. C. and Liu, Y. C., “Event-triggered control for adaptive bilateral teleoperators with communication delays,” IET Control Theory Appl 14(3), 427437 (2020).CrossRefGoogle Scholar
Gao, H. and Ma, C., “Event-triggered aperiodic intermittent sliding-mode control for master-slave bilateral teleoperation robotic systems,” Indu Robot Int J Robot Res Appl 50(3), 467482 (2023).CrossRefGoogle Scholar
Zhao, Y., Liu, P. X. and Wang, H., “Adaptive event-triggered synchronization control for bilateral teleoperation system subjected to fixed-time constraint,” Int J Adapt Control Signal Process 36(8), 20412064 (2022).CrossRefGoogle Scholar
Wang, Z., Lam, H. K., Xiao, B., Chen, Z., Liang, B. and Zhang, T., “Event-triggered prescribed-time fuzzy control for space teleoperation systems subject to multiple constraints and uncertainties,” IEEE Trans Fuzzy Syst 29(9), 27852797 (2021).CrossRefGoogle Scholar
de Lima, M. V., Mozelli, L. A., Neto, A. A. and Souza, F. O., “A simple algebraic criterion for stability of bilateral teleoperation systems under time-varying delays,” Mech Syst Signal Process 137, 111 (2020).CrossRefGoogle Scholar
Yu, X., He, W., Li, H. and Sun, J., “Adaptive fuzzy full-state and output-feedback control for uncertain robots with output constraint,” IEEE Trans Syst Man Cybern Syst 51(11), 69947007 (2021).CrossRefGoogle Scholar
Bavili, R. E., Akbari, A. and Esfanjani, R. M., “Control of teleoperation systems in the presence of varying transmission delay, non-passive interaction forces, and model uncertainty,” Robotica 39(8), 14511467 (2021).CrossRefGoogle Scholar
Chan, L., Huang, Q. and Wang, P., “Adaptive-observer-based robust control for a time-delayed teleoperation system with scaled four-channel architecture,” Robotica 40(5), 13851405 (2022).CrossRefGoogle Scholar
Du, H., Wen, G., Wu, D., Cheng, Y. and Lu, J., “Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems,” Automatica 113, 111 (2020).CrossRefGoogle Scholar
Shen, H. and Pan, Y. J., “Improving tracking performance of nonlinear uncertain bilateral teleoperation systems with time-varying delays and disturbances,” IEEE-ASME Trans Mechtron 25(3), 11711181 (2020).CrossRefGoogle Scholar
Zhang, H., Song, A., Li, H., Chen, D. and Fan, L., “Adaptive finite-time control scheme for teleoperation with time-varying delay and uncertainties,” IEEE Trans Syst Man Cybern Syst 52(3), 15521566 (2022).CrossRefGoogle Scholar