Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T16:02:16.409Z Has data issue: false hasContentIssue false

A five-bar mechanism to assist finger flexion-extension movement: system implementation

Published online by Cambridge University Press:  01 September 2022

Araceli Zapatero-Gutiérrez*
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Querétaro, Instituto Politécnico Nacional, Querétaro, Querétaro 76090, México
Eduardo Castillo-Castañeda
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Querétaro, Instituto Politécnico Nacional, Querétaro, Querétaro 76090, México
Med Amine Laribi
Affiliation:
Institut PPRIME, Département Génie Mécanique et Systèmes Complexes, Université de Poitiers, Poitiers 86073, France
*
*Corresponding author. E-mail: [email protected]

Abstract

The lack of specialized personnel and assistive technology to assist in rehabilitation therapies is one of the challenges facing the health sector today, and it is projected to increase. For researchers and engineers, it represents an opportunity to innovate and develop devices that improve and optimize rehabilitation services for the benefit of society. Among the different types of injuries, hand injuries occur most frequently. These injuries require a rehabilitation process in order for the hand to regain its functionality. This article presents the fabrication and instrumentation of an end-effector prototype, based on a five-bar configuration, for finger rehabilitation that executes a natural flexion-extension movement. The dimensions were obtained through the gradient method optimization and evaluated through Matlab. Experimental tests were carried out to demonstrate the prototype’s functionality and the effectiveness of a five-bar mechanism acting in a vertical plane, where gravity influences the mechanism’s performance. Position control using fifth-order polynomials with via points was implemented in the joint space. The design of the end-effector was also evaluated by performing a theoretical comparison, calculated as a function of a real flexion-extension trajectory of the fingers and the angle of rotation obtained through an IMU. As a result, controlling the two degrees of freedom of the mechanism at several points of the trajectory assures the end-effector trajectory and therefore the fingers’ range of motion, which helps for full patient recovery.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crowe, C. S., Massenburg, B. B., Morrison, S. D., Chang, J., Friedrich, J. B., Abady, G. G., Alahdab, F., Alipour, V., Arabloo, J., Asaad, M., Banach, M., Bijani, A., Borzì, A. M., Briko, N. I., Castle, C. D., Cho, D. Y., Chung, M. T., Daryani, A., Demoz, G. T., Dingels, Z. V., Do, H. T., Fischer, F., Fox, J. T., Fukumoto, T., Gebre, A. K., Gebremichael, B., Haagsma, J. A., Haj-Mirzaian, A., Handiso, D. W., Hay, S. I., Hoang, C. L., Irvani, S. S. N., Jozwiak, J. J., Kalhor, R., Kasaeian, A., Khader, Y. S., Khalilov, R., Khan, E. A., Khundkar, R., Kisa, S., Kisa, A., Liu, Z., Majdan, M., Manafi, N., Manafi, A., Manda, A.-L., Meretoja, T. J., Miller, T. R., Mohammadian-Hafshejani, A., Mohammadpourhodki, R., Mohseni Bandpei, M. A., Mokdad, A. H., Naimzada, M. D., Ndwandwe, D. E., Nguyen, C. T., Nguyen, H. L. T., Olagunju, A. T., Olagunju, T. O., Pham, H. Q., Angga Pribadi, D. R., Rabiee, N., Ramezanzadeh, K., Ranganathan, K., Roberts, N. L. S., Roever, L., Safari, S., Samy, A. M., Riera, L. S., Shahabi, S., Smarandache, C.-G., Sylte, D. O., Tesfay, B. E., Tran, B. X., Ullah, I., Vahedi, P., Vahedian-Azimi, A., Vos, T., Woldeyes, D. H., Wondmieneh, A. B., Zhang, Z.-J. and James, S. L., “Global trends of hand and wrist trauma: A systematic analysis of fracture and digit amputation using the global burden of disease 2017 study,” Inj. Prev. 26(Supp 1), i115i124 (2020). doi: 10.1136/injuryprev-2019-043495.Google ScholarPubMed
Moggio, L., de Sire, A., Marotta, N., Demeco, A. and Ammendiola, A., “Exoskeleton versus end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: systematic review and meta-analysis,” Top. Stroke Rehabil. (6), 112 (2021). doi: 10.1080/10749357.2021.1967657.Google ScholarPubMed
Esmatloo, P. and Deshpande, A. A., “Quality-Focused, Impairment-Targeted Approach in Rehabilitation of the Hand after Stroke,” In: Robot-aided Neuromechanic Workshop, 2020 IEEE RAS/EMBS International Conference on Biomedical Robotics & Biomechatronics (BIOROB 2020) pp. 13.Google Scholar
Carey, J. R., Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L., Rundquist, P. and Ugurbil, K., “Analysis of fMRI and finger tracking training in subjects with chronic stroke,” Brain 125(4), 773788 (2002).CrossRefGoogle ScholarPubMed
Carey, J. R., Durfee, W. K., Bhatt, E., Nagpal, A., Weinstein, S. A., Anderson, K. M. and Lewis, S. M., “Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke,” Neurorehabil. Neural. Repair 21(3), 216232 (2007). doi: 10.1177/1545968306292381.CrossRefGoogle ScholarPubMed
Yue, Z., Zhang, X. and Wang, J., “Hand rehabilitation robotics on poststroke motor recovery,” Behav. Neurol. 2017(3), 120 (2017). doi: 10.1155/2017/3908135.CrossRefGoogle ScholarPubMed
Stein, J., Bishop, L., Gillen, G. and Helbok, R., “Robot-assisted exercise for hand weakness after stroke: A pilot study,” Am. J. Phys. Med. Rehabil. 90(11), 887894 (2011). doi: 10.1097/PHM.0b013e3182328623.CrossRefGoogle ScholarPubMed
Wardhani, P., Triyani, I., Ardiansyah, F. and de Matos, F. A., “Finger exoskeleton in simple motor rehabilitation therapy on arm and hand muscle ability of post-stroke sufferers,” J. Inf. Kesehatan 19(1), 111 (2021). doi: 10.31965/infokes.CrossRefGoogle Scholar
Ertas, I., Hocaoglu, E. and Patoglu, V., “AssistOn-Finger: An under-actuated finger exoskeleton for robot-assisted tendon therapy,” Robotica 32(8), 13631382 (2014). doi: 10.1017/S0263574714001957.CrossRefGoogle Scholar
Talat, H., Munawar, H., Hussain, H. and Azam, U., “Design, modeling and control of an index finger exoskeleton for rehabilitation,” Robotica, 1-25 (2022). doi: 10.1017/S0263574722000388.CrossRefGoogle Scholar
Davarzani, S., Ahmadi-Pajouh, M. A. and Ghafarirad, H., “Design of sensing system for experimental modeling of soft actuator applied for finger rehabilitation,” Robotica 40(7), 20912111 (2022).). doi: 10.1017/S0263574721001533.CrossRefGoogle Scholar
Briot, S. and Goldsztejn, A., “Topology optimization of industrial robots: Application to a five-bar mechanism,” Mech. Mach. Theory 120(2), 3056 (2018). doi: 10.1016/j.mechmachtheory.2017.09.011.CrossRefGoogle Scholar
Zin, B., Sun, H. and Zhang, D., “Design, analysis and control of a winding hybrid-driven cable parallel manipulator, robotics and computer,” Integr. Manuf. 48(2), 196208 (2017). doi: 10.1016/j.rcim.2017.04.002.Google Scholar
Daud, O. A., Biral, F., Oboe, R. and Piron, L., “Design of a Haptic Device for Finger and Hand Rehabilitation,” In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society (2010) pp. 20752080. doi: 10.1109/IECON.2010.5675347.CrossRefGoogle Scholar
Zapatero-Gutiérrez, A., Laribi, M. A. and Castillo-Castañeda, E., “Optimal Design of a Five-Bar Mechanism Dedicated to Assisting in the Fingers Flexion-Extension Movement,” In: Mechanism Design for Robotics, (Zeghloul, S., Laribi, M. A. and Arsicault, M., eds.), vol. 103 (Springer International Publishing, Cham 2021) pp. 256264.CrossRefGoogle Scholar
Ceccarelli, M., Rodríguez, N. and Carbone, G., “Design and tests of a three finger hand with 1-DOF articulated fingers,” Robotica 24(2), 183196 (2006). doi: 10.1017/S0263574705002018.CrossRefGoogle Scholar
Zapatero-Gutiérrez, A., Castillo-Castañeda, E. and Laribi, M. A., “On the optimal synthesis of a finger rehabilitation slider-crank-based device with a prescribed real trajectory: Motion specifications and design process,” Appl. Sci. 11(2), 124 (2021). doi: 10.3390/app11020708.CrossRefGoogle Scholar
Orlando, M., Dutta, A., Saxena, A., Behera, L., Tamei, T. and Shibata, T., “Manipulability analysis of human thumb, index and middle fingers in cooperative 3D rotational movements of a small object,” Robotica 31(5), 797809 (2013). doi: 10.1017/S0263574713000064.CrossRefGoogle Scholar
He, G. and Lu, Z., “Optimization of planar Five-bar parallel mechanism via Self-reconfiguration method,” Chin. J. Aeronaut. 18(2), 185192 (2005).CrossRefGoogle Scholar
The MathWorks, Inc., Optimization Toolbox for Use with MATLAB, User’s Guide. Ver-sion 2 (1999-2000), pp. 4-32-4-44.Google Scholar
Porawagama, C. D. and Munasinghe, S. R., “Reduced Jerk Joint Space Trajectory Planning Method using 5-3-5 Spline Cfor Robot Manipulators,” In: 7th International Conference on Information and Automation for Sustainability "Sharpening Futur with Sustain Technol ICIAfS 2014 (2014). doi: 10.1109/ICIAFS.2014.7069580.CrossRefGoogle Scholar
Alici, G., “Determination of singularity contours for five-bar planar parallel manipulators,” Robotica 18(5), 569575 (2000). doi: 10.1017/S0263574700002733.CrossRefGoogle Scholar
cond, Condition Number of matrix. Matlab Documentation. Google Scholar
Zarkandi, S., “Isotropy analysis of spherical mechanisms using an instantaneous-pole based method, engineering science and technology,” Int. J. 20(1), 240246 (2017). doi: 10.1016/j.jestch.2016.08.016.Google Scholar