Published online by Cambridge University Press: 16 March 2021
Cable-driven parallel manipulators (CDPMs) offer advantages over traditional parallel manipulators. Though their ability to accelerate is higher than the traditional motion platforms, the capabilities are often not used optimally. The issues of cable slackening (especially at higher accelerations) and the emergence of singularity poses have traditional limitations. This paper analyzes and generates manipulator configurations that reduce the effect of these two essential hindrances of deploying CDPMs. A methodology, inspired by rigid body dynamics of multiple contact problems, used to optimize the positions of attachment points, is shown to be effective.