Hostname: page-component-6bf8c574d5-956mj Total loading time: 0 Render date: 2025-02-27T14:06:45.967Z Has data issue: false hasContentIssue false

Efficient relative localization and coordination system for unmanned ground vehicle formations under directed graph structure

Published online by Cambridge University Press:  24 February 2025

Kader M. Kabore*
Affiliation:
Electrical and Computer Engineering Department, Abdullah Gül University, Kayseri, Turkey
Samet Güler
Affiliation:
Electrical and Computer Engineering Department, Abdullah Gül University, Kayseri, Turkey
*
Corresponding author: Kader M. Kabore; Email: [email protected]

Abstract

Onboard localization for multi-robot systems stands as a critical area of research with wide-ranging applications. This paper introduces an innovative framework for multi-robot localization, uniquely characterized by its onboard capability, thereby negating the dependency on external infrastructure. Our approach harnesses the inherent capabilities of each robot, enabling them to localize and synchronize their movements independently. The integration of cooperative localization algorithms with formation control mechanisms empowers a group of robots to sustain a predefined formation while following a linear trajectory. The efficacy of our framework is substantiated through comprehensive simulations and real-world experimental validations. We rigorously assess the system’s resilience to localization inaccuracies and external disturbances, demonstrating its adaptability and consistency in maintaining formation under diverse conditions. Furthermore, we explore the scalability of our approach, highlighting its potential to manage varying numbers of robots and its applicability in tasks such as collaborative transportation.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelkader, M., Güler, S., Jaleel, H. and Shamma, J. S., “Aerial swarms: Recent applications and challenges,” Curr. Robot. Rep. 2(3), 309320 (2021).CrossRefGoogle ScholarPubMed
Ahn, H.-S.. Formation Control (Springer International Publishing, 2020).CrossRefGoogle Scholar
Almadhoun, R., Taha, T., Seneviratne, L., Dias, J. and Cai, G., “A survey on inspecting structures using robotic systems,” Int. J. Adv. Robot. Syst. 13(6), 1729881416663664 (2016).CrossRefGoogle Scholar
Anderson, B. D. O., Yu, C., Fidan, B. and Hendrickx, J. M., “Rigid graph control architectures for autonomous formations,” IEEE Contr. Syst. Mag. 28(6), 4863 (2008).Google Scholar
Choi, Y. H. and Kim, D., “Distance-based formation control with goal assignment for global asymptotic stability of multi-robot systems,” IEEE Robot. Autom. Lett. 6(2), 20202027 (2021).CrossRefGoogle Scholar
Chung, S.-J., Paranjape, A. A., Dames, P., Shen, S. and Kumar, V., “A survey on aerial swarm robotics,” IEEE Trans. Robot. 34(4), 837855 (2018).CrossRefGoogle Scholar
De Queiroz, M., Cai, X. and Feemster, M.. Formation Control of Multi-Agent Systems: A Graph Rigidity Approach (John Wiley & Sons, 2019).CrossRefGoogle Scholar
Basma Gh Elkilany, A. A. A., Fathelbab, A. M. R. and Ishii, H., “Potential field method parameters tuning using fuzzy inference system for adaptive formation control of multi-mobile robots,” Robotics 9(1), 10 (2020).CrossRefGoogle Scholar
Fidan, B., Gazi, V., Zhai, S., Cen, N. and Karataş, E., “Single-view distance-estimation-based formation control of robotic swarms,” IEEE Trans. Ind. Electron. 60(12), 57815791 (2012).CrossRefGoogle Scholar
Guler, S., Abdelkader, M. and Shamma, J. S., “Peer-to-peer relative localization of aerial robots with ultrawideband sensors,” IEEE Trans. Contr. Syst. Technol. 29(5), 116 (2020). doi: 10.1109/tcst.2020.3027627.Google Scholar
Horyna, J., Baca, T., Walter, V., Albani, D., Hert, D., Ferrante, E. and Saska, M., “Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication,” Autonomous Robots, 47(1), 77–93 (2023).Google Scholar
Kabore, K. and Güler, S., Practical formation acquisition mechanism for nonholonomic leader-follower networks (2022).CrossRefGoogle Scholar
Krajník, T., Nitsche, M., Faigl, J., Vaněk, P., Saska, M., Přeučil, L., Duckett, T. and Mejail, M., “A practical multirobot localization system,” J. Intell. Robot. Syst. 76(3), 539562 (2014).CrossRefGoogle Scholar
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C. L.. “Microsoft Coco: Common Objects in Context.” In: European Conference on Computer Vision, Springer (2014) pp. 740755.Google Scholar
Liu, X., Ge, S. S. and Goh, C.-H., “Vision-based leader-follower formation control of multiagents with visibility constraints,” IEEE Trans. Contr. Syst. Technol. 27(3), 13261333 (2018).CrossRefGoogle Scholar
Nguyen, T.-M., Qiu, Z., Cao, M., Nguyen, T. H. and Xie, L., “Single landmark distance-based navigation,” IEEE Trans. Contr. Syst. Technol. 28(5), 20212028 (2020). doi: 10.1109/tcst.2019.2916089.CrossRefGoogle Scholar
O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., Riordan, D. and Walsh, J.. “Deep Learning vs. Traditional Computer Vision.” In: Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Springer, 11, (2020) pp. 128144.Google Scholar
Saska, M., Baca, T., Thomas, J., Chudoba, J., Preucil, L., Krajnik, T., Faigl, J., Loianno, G. and Kumar, V., “System for deployment of groups of unmanned micro aerial vehicles in gps-denied environments using onboard visual relative localization,” Auton. Robot. 41(4), 919944 (2017).CrossRefGoogle Scholar
Schellenberg, B., Richardson, T., Watson, M., Greatwood, C., Clarke, R., Thomas, R., Wood, K., Freer, J., Thomas, H., Liu, E., Salama, F. and Chigna, G., “Remote sensing and identification of volcanic plumes using fixed-wing uavs over volcán de fuego, guatemala,” J. Field Robot. 36(7), 11921211 (2019).CrossRefGoogle Scholar
Schilling, F., Schiano, F. and Floreano, D., “Vision-based drone flocking in outdoor environments,” IEEE Robot. Autom. Lett. 6(2), 29542961 (2021).CrossRefGoogle Scholar
Silano, G., Baca, T., Penicka, R., Liuzza, D. and Saska, M., “Power line inspection tasks with multi-aerial robot systems via signal temporal logic specifications,” IEEE Robot. Autom. Lett. 6(2), 41694176 (2021).CrossRefGoogle Scholar
Trinh, M. H., Zhao, S., Sun, Z., Zelazo, D., Anderson, B. D. O. and Ahn, H.-S., “Bearing-based formation control of a group of agents with leader-first follower structure,” IEEE Trans. Automat. Contr. 64(2), 598613 (2018).Google Scholar
Ullah, F., Al-Turjman, F., Qayyum, S., Inam, H. and Imran, M., “Advertising through UAVs: Optimized path system for delivering smart real-estate advertisement materials,” Int. J. Intell. Syst. 36(7), 34293463 (2021).CrossRefGoogle Scholar
Vo, B.-N. and Ma, W.-K., “The gaussian mixture probability hypothesis density filter,” IEEE Trans. Signal Process. 54(11), 40914104 (2006).CrossRefGoogle Scholar
Vrba, M. and Saska, M., “Marker-less micro aerial vehicle detection and localization using convolutional neural networks,” IEEE Robot. Autom. Lett. 5(2), 24592466 (2020).CrossRefGoogle Scholar
Wang, Y., Wen, X., Yin, L., Xu, C., Cao, Y. and Gao, F., “Certifiably optimal mutual localization with anonymous bearing measurements,” IEEE Robot. Autom. Lett. 7(4), 93749381 (2022).CrossRefGoogle Scholar
Zhao, S. and Zelazo, D., “Bearing rigidity theory and its applications for control and estimation of network systems: Life beyond distance rigidity,” IEEE Contr. Syst. Mag. 39(2), 6683 (2019).CrossRefGoogle Scholar